Previous |  Up |  Next

Article

Title: Projectability and weak homogeneity of pseudo effect algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 183-196
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with a pseudo effect algebra $\Cal A$ possessing a certain interpolation property. According to a result of Dvurečenskij and Vettterlein, $\Cal A$ can be represented as an interval of a unital partially ordered group $G$. We prove that $\Cal A$ is projectable (strongly projectable) if and only if $G$ is projectable (strongly projectable). An analogous result concerning weak homogeneity of $\Cal A$ and of $G$ is shown to be valid. (English)
Keyword: pseudo effect algebra
Keyword: unital partially ordered group
Keyword: internal direct factor
Keyword: polar
Keyword: projectability
Keyword: strong projectability
Keyword: weak homogeneity
MSC: 06D35
MSC: 06F20
idZBL: Zbl 1224.06020
idMR: MR2486624
.
Date available: 2010-07-20T15:00:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140472
.
Reference: [1] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia Logica Library Vol. 7.Kluwer Dordrecht (2000). 10.1007/978-94-015-9480-6
Reference: [2] Darnel, M. R.: Theory of Lattice-Ordered Groups.Marcel Dekker New York (1995). Zbl 0810.06016, MR 1304052
Reference: [3] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties.Inter. J. Theor. Phys. 40 (2001), 685-701. MR 1831592, 10.1023/A:1004192715509
Reference: [4] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representations.Int. J. Theor. Phys. 40 (2001), 703-726. MR 1831593, 10.1023/A:1004144832348
Reference: [5] Dvurečenskij, A., Vetterlein, T.: Infinitary lattice and Riesz properties of pseudoeffect algebras and $po$-groups.J. Aust. Math. Soc. 75 (2003), 295-311. MR 2015319, 10.1017/S1446788700008120
Reference: [6] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras.In: Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6-9 May, Romania (1999), 961-968. Zbl 0985.06007, MR 1730100
Reference: [7] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [8] Jakubík, J.: Weak homogeneity and Pierce's theorem for $MV$-algebras.Czechoslovak Math. J. 56 (2006), 1215-1227. Zbl 1164.06315, MR 2280805, 10.1007/s10587-006-0090-9
Reference: [9] Jakubík, J.: Weak homogeneity of lattice ordered groups.Czechoslovak Math. J (to appear). MR 2356285
Reference: [10] Jakubík, J.: Direct product decompositions of pseudo effect algebras.Math. Slovaca 55 (2005), 379-398. MR 2181779
Reference: [11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509
Reference: [12] Sikorski, R.: Boolean Algebras, 2nd edition.Springer Berlin (1964). MR 0177920
.

Files

Files Size Format View
CzechMathJ_59-2009-1_13.pdf 271.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo