Title:
|
Projectability and weak homogeneity of pseudo effect algebras (English) |
Author:
|
Jakubík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
183-196 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we deal with a pseudo effect algebra $\Cal A$ possessing a certain interpolation property. According to a result of Dvurečenskij and Vettterlein, $\Cal A$ can be represented as an interval of a unital partially ordered group $G$. We prove that $\Cal A$ is projectable (strongly projectable) if and only if $G$ is projectable (strongly projectable). An analogous result concerning weak homogeneity of $\Cal A$ and of $G$ is shown to be valid. (English) |
Keyword:
|
pseudo effect algebra |
Keyword:
|
unital partially ordered group |
Keyword:
|
internal direct factor |
Keyword:
|
polar |
Keyword:
|
projectability |
Keyword:
|
strong projectability |
Keyword:
|
weak homogeneity |
MSC:
|
06D35 |
MSC:
|
06F20 |
idZBL:
|
Zbl 1224.06020 |
idMR:
|
MR2486624 |
. |
Date available:
|
2010-07-20T15:00:09Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140472 |
. |
Reference:
|
[1] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia Logica Library Vol. 7.Kluwer Dordrecht (2000). 10.1007/978-94-015-9480-6 |
Reference:
|
[2] Darnel, M. R.: Theory of Lattice-Ordered Groups.Marcel Dekker New York (1995). Zbl 0810.06016, MR 1304052 |
Reference:
|
[3] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties.Inter. J. Theor. Phys. 40 (2001), 685-701. MR 1831592, 10.1023/A:1004192715509 |
Reference:
|
[4] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representations.Int. J. Theor. Phys. 40 (2001), 703-726. MR 1831593, 10.1023/A:1004144832348 |
Reference:
|
[5] Dvurečenskij, A., Vetterlein, T.: Infinitary lattice and Riesz properties of pseudoeffect algebras and $po$-groups.J. Aust. Math. Soc. 75 (2003), 295-311. MR 2015319, 10.1017/S1446788700008120 |
Reference:
|
[6] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras.In: Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6-9 May, Romania (1999), 961-968. Zbl 0985.06007, MR 1730100 |
Reference:
|
[7] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439 |
Reference:
|
[8] Jakubík, J.: Weak homogeneity and Pierce's theorem for $MV$-algebras.Czechoslovak Math. J. 56 (2006), 1215-1227. Zbl 1164.06315, MR 2280805, 10.1007/s10587-006-0090-9 |
Reference:
|
[9] Jakubík, J.: Weak homogeneity of lattice ordered groups.Czechoslovak Math. J (to appear). MR 2356285 |
Reference:
|
[10] Jakubík, J.: Direct product decompositions of pseudo effect algebras.Math. Slovaca 55 (2005), 379-398. MR 2181779 |
Reference:
|
[11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509 |
Reference:
|
[12] Sikorski, R.: Boolean Algebras, 2nd edition.Springer Berlin (1964). MR 0177920 |
. |