Previous |  Up |  Next

Article

Title: Uniform decay for a hyperbolic system with differential inclusion and nonlinear memory source term on the boundary (English)
Author: Park, Jong Yeoul
Author: Park, Sun Hye
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 287-303
Summary lang: English
.
Category: math
.
Summary: We prove the existence and uniform decay rates of global solutions for a hyperbolic system with a discontinuous and nonlinear multi-valued term and a nonlinear memory source term on the boundary. (English)
Keyword: existence of solution
Keyword: differential inclusion
Keyword: memory source term
Keyword: uniform decay
MSC: 35L70
MSC: 35L71
MSC: 35L85
MSC: 35L86
MSC: 49J53
idZBL: Zbl 1224.35285
idMR: MR2532376
.
Date available: 2010-07-20T15:08:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140481
.
Reference: [1] Aassila, M.: Global existence of solutions to a wave equation with damping and source terms.Diff. Int. Eqs. 14 (2001), 1301-1314. Zbl 1018.35053, MR 1859607
Reference: [2] Cavalcanti, M. M.: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation.Discrete Contin. Dynam. Systems 8 (2002), 675-695. Zbl 1009.74034, MR 1897875
Reference: [3] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Ma, T. F., Soriano, J. A.: Global existence and asymptotic stability for viscoelastic problems.Diff. Int. Eqs. 15 (2002), 731-748. MR 1893844
Reference: [4] Gasiński, L.: Existence of solutions for hyperbolic hemivariational inequalities.J. Math. Anal. Appl. 276 (2002), 723-746. MR 1944786, 10.1016/S0022-247X(02)00431-6
Reference: [5] Gasiński, L., Papageorgiou, N. S.: Nonlinear hemivariational inequalities at resonance.J. Math. Anal. Appl. 244 (2000), 200-213. MR 1746797, 10.1006/jmaa.1999.6701
Reference: [6] Kormornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation.J. Math. Pures et Appl. 69 (1990), 33-54. MR 1054123
Reference: [7] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod-Gauthier Villars, Paris (1969). Zbl 0189.40603, MR 0259693
Reference: [8] Miettinen, M.: A parabolic hemivariational inequality.Nonlinear Anal. 26 (1996), 725-734. Zbl 0858.35072, MR 1362746, 10.1016/0362-546X(94)00312-6
Reference: [9] Miettinen, M., Panagiotopoulos, P. D.: On parabolic hemivariational inequalities and applications.Nonlinear Anal. 35 (1999), 885-915. Zbl 0923.35089, MR 1664899
Reference: [10] Rivera, J. E. Munoz, Salvatierra, A. P.: Asymptotic behavior of the energy in partially viscoelastic materials.Quart. Appl. Math. 59 (2001), 557-578. MR 1848535, 10.1090/qam/1848535
Reference: [11] Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applincations.Convex and Nonconvex Energy Functions, Birkhäuser, Basel, Boston (1985). MR 0896909
Reference: [12] Panagiotopoulos,, P. D.: Hemivariational Inequalities and Applications in Mechanics and Engineering.Springer, New York (1993). MR 1385670
Reference: [13] Park, J. Y., Bae, J. J.: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term.Appl. Math. Comput. 129 (2002), 87-105. Zbl 1032.35139, MR 1897321, 10.1016/S0096-3003(01)00031-5
Reference: [14] Park, J. Y., Kim, H. M., Park, S. H.: On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities.Nonlinear Anal. 55 (2003), 103-113. Zbl 1032.35144, MR 2001634, 10.1016/S0362-546X(03)00216-5
Reference: [15] Rauch, J.: Discontinuous semilinear differential equations and multiple valued maps.Proc. Amer. Math. Soc. 64 (1977), 277-282. Zbl 0413.35031, MR 0442453, 10.1090/S0002-9939-1977-0442453-6
.

Files

Files Size Format View
CzechMathJ_59-2009-2_2.pdf 286.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo