Previous |  Up |  Next

Article

Title: Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability (English)
Author: Ungureanu, Viorica Mariela
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 317-342
Summary lang: English
.
Category: math
.
Summary: In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see \cite {chen}, for finite dimensional stochastic equations or \cite {UC}, for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see \cite {1990}, \cite {ukl}). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ${\mathbf R}_{+}$ and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known \cite {ukl} that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see \cite {1990}). (English)
Keyword: Riccati equation
Keyword: stochastic uniform observability
Keyword: stabilizability
Keyword: quadratic control
Keyword: tracking problem
MSC: 49K45
MSC: 93E20
idZBL: Zbl 1224.93135
idMR: MR2532378
.
Date available: 2010-07-20T15:11:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140483
.
Reference: [1] Barbu, V., Prato, G. Da: Hamilton Jacobi Equations in Hilbert Spaces.Research Notes in Mathematics, 86. Boston-London-Melbourne: Pitman Advanced Publishing Program (1983). Zbl 0508.34001, MR 0704182
Reference: [2] Chen, S., Zhou, Xun YU: Stochastic linear quadratic regulators with indefinite control weight costs. II.SIAM J. Control Optimization 39 1065-1081 (2000). Zbl 1023.93072, MR 1814267, 10.1137/S0363012998346578
Reference: [3] Curtain, R., Pritchard, J.: Infinite Dimensional Linear Systems Theory.Lecture Notes in Control and Information Sciences. 8. Berlin-Heidelberg-New York: Springer-Verlag. VII (1978). Zbl 0389.93001, MR 0516812
Reference: [4] Curtain, R., Falb, P.: Ito's Lemma in infinite dimensions.J. Math. Anal. Appl. 31 434-448 (1970). Zbl 0233.60051, MR 0261718, 10.1016/0022-247X(70)90037-5
Reference: [5] Dragan, V., Morozan, T.: Stochastic observability and applications.IMA J. Math. Control Inf. 21 323-344 (2004). Zbl 1060.93019, MR 2076224, 10.1093/imamci/21.3.323
Reference: [6] Grecksch, W., Tudor, C.: Stochastic Evolution Equations.A Hilbert Space Approach. Mathematical Research. 85. Berlin: Akademie Verlag (1995). Zbl 0831.60069, MR 1353910
Reference: [7] Douglas, R.: Banach Algebra Techniques in Operator Theory.Pure and Applied Mathematics, 49. New York-London: Academic Press. XVI (1972). Zbl 0247.47001, MR 0361893
Reference: [8] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer-Verlag, Berlin, New York (1983). Zbl 0516.47023, MR 0710486
Reference: [9] Prato, G. Da: Quelques résultats d'existence, unicité et régularité pour une problème de la théorie du contrôle.J. Math. Pures et Appl. 52 (1973), 353-375. MR 0358430
Reference: [10] Prato, G. Da, Ichikawa, A.: Quadratic control for linear time-varying systems.SIAM. J. Control and Optimization 28 359-381 (1990). Zbl 0692.49006, MR 1040464, 10.1137/0328019
Reference: [11] Prato, G. Da, Zabczyc, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications. 44. Cambridge, Cambridge University Press. xviii (1992). MR 1207136
Reference: [12] Prato, G. Da, Ichikawa, A.: Quadratic control for linear periodic systems.Appl. Math. Optimization 18 39-66 (1988). Zbl 0647.93057, MR 0928209, 10.1007/BF01443614
Reference: [13] Prato, G. Da, Ichikawa, A.: Lyapunov equations for time-varying linear systems.Syst. Control Lett. 9 165-172 (1987). Zbl 0678.93051, MR 0906236, 10.1016/0167-6911(87)90023-5
Reference: [14] Pritchard, A. J., Zabczyc, J.: Stability and Stabilizability of Infinite Dimensional Systems.SIAM Rev. 23 25-52 (1981). MR 0605439, 10.1137/1023003
Reference: [15] Morozan, T.: Stochastic uniform observability and Riccati equations of stochastic control.Rev. Roum. Math. Pures Appl. 38 771-781 (1993). Zbl 0810.93069, MR 1262989
Reference: [16] Morozan, T.: On the Riccati Equation of Stochastic Control.Optimization, optimal control and partial differential equations. Proc. 1st Fr.-Rom. Conf., Iasi/Rom. (1992).
Reference: [17] Morozan, T.: Linear quadratic, control and tracking problems for time-varying stochastic differential systems perturbed by a Markov chain.Rev. Roum. Math. Pures Appl. 46 783-804 (2001). Zbl 1078.93574, MR 1929525
Reference: [18] Ungureanu, V. M.: Riccati equation of stochastic control and stochastic uniform observability in infinite dimensions.Barbu, Viorel (ed.) et al., Analysis and optimization of differential systems. IFIP TC7/WG 7.2 international working conference, Constanta, Romania, September 10-14, 2002. Boston, MA: Kluwer Academic Publishers 421-432 (2003). Zbl 1071.93014, MR 1993734
Reference: [19] Ungureanu, V. M.: Uniform exponential stability for linear discrete time systems with stochastic perturbations in Hilbert spaces.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 7 757-772 (2004). MR 2101664
Reference: [20] Ungureanu, V. M.: Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems.Electron. J. Qual. Theory Differ. Equ. 2004, Paper No. 4, 22 p. (2004). Zbl 1072.60047, MR 2039027
Reference: [21] Ungureanu, V. M.: Cost of tracking for differential stochastic equations in Hilbert spaces.Stud. Univ. Babeş-Bolyai, Math. 50 73-81 (2005). Zbl 1113.60061, MR 2247532
Reference: [22] Ungureanu, V. M.: Stochastic uniform observability of linear differential equations with multiplicative noise.J. Math. Anal. Appl. 343 446-463 (2008). Zbl 1147.60043, MR 2412142, 10.1016/j.jmaa.2008.01.058
Reference: [23] Ungureanu, V. M.: Stochastic uniform observability of general linear differential equations.Dynamical Systems 23 333-350 (2008). Zbl 1155.93017, MR 2455264, 10.1080/14689360802275773
Reference: [24] Tudor, C.: Optimal control for an infinite-dimensional periodic problem under white noise perturbations.SIAM J. Control Optimization 28 253-264 (1990). Zbl 0693.93086, MR 1040459, 10.1137/0328014
Reference: [25] Yosida, K.: Functional analysis.6th ed. Grundlehren der mathematischen Wissenschaften, 123. Berlin-Heidelberg-New York: Springer-Verlag. XII (1980). Zbl 0435.46002, MR 0617913
.

Files

Files Size Format View
CzechMathJ_59-2009-2_4.pdf 377.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo