Title:
|
Orbit projections of proper Lie groupoids as fibrations (English) |
Author:
|
Rainer, Armin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
591-594 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper Lie groupoid such that each orbit is of finite type. The orbit projection $M \to M/\mathcal{G}$ is a fibration if and only if $\mathcal{G}\rightrightarrows M$ is regular. (English) |
Keyword:
|
orbit projection |
Keyword:
|
proper Lie groupoid |
Keyword:
|
fibration |
MSC:
|
22A22 |
MSC:
|
55R05 |
MSC:
|
55R65 |
idZBL:
|
Zbl 1224.22005 |
idMR:
|
MR2545642 |
. |
Date available:
|
2010-07-20T15:27:33Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140502 |
. |
Reference:
|
[1] Dugundji, J.: Topology.Allyn and Bacon, Inc., Boston (1966). Zbl 0144.21501, MR 0193606 |
Reference:
|
[2] Palais, R. S.: On the existence of slices for actions of non-compact Lie groups.Ann. of Math. 73 (1961), 295-323. Zbl 0103.01802, MR 0126506, 10.2307/1970335 |
Reference:
|
[3] Rainer, A.: Orbit projections as fibrations.(to appear) in Czech. Math. J., arXiv: math.DG/0610513. MR 2532388 |
Reference:
|
[4] Weinstein, A.: Linearization of regular proper groupoids.J. Inst. Math. Jussieu 3 (2002), 493-511. Zbl 1043.58009, MR 1956059 |
Reference:
|
[5] Zung, N. T.: Proper groupoids and momentum maps: linearization, affinity, and convexity.Ann. Sci. Éc. Norm. Supér. 39 (2006), 841-869. MR 2292634, 10.1016/j.ansens.2006.09.002 |
. |