Previous |  Up |  Next

Article

Title: Loewy coincident algebra and $QF$-3 associated graded algebra (English)
Author: Tachikawa, Hiroyuki
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 583-589
Summary lang: English
.
Category: math
.
Summary: We prove that an associated graded algebra $R_G$ of a finite dimensional algebra $R$ is $QF$ (= selfinjective) if and only if $R$ is $QF$ and Loewy coincident. Here $R$ is said to be Loewy coincident if, for every primitive idempotent $e$, the upper Loewy series and the lower Loewy series of $Re$ and $eR$ coincide. \endgraf $QF$-3 algebras are an important generalization of $QF$ algebras; note that Auslander algebras form a special class of these algebras. We prove that for a Loewy coincident algebra $R$, the associated graded algebra $R_G$ is $QF$-3 if and only if $R$ is $QF$-3. (English)
Keyword: associated graded algebra
Keyword: $QF$ algebra
Keyword: $QF$-3 algebra
Keyword: upper Loewy series
Keyword: lower Loewy series
MSC: 13A30
MSC: 16D50
MSC: 16L60
MSC: 16P70
idZBL: Zbl 1224.13007
idMR: MR2545641
.
Date available: 2010-07-20T15:27:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140501
.
Reference: [1] Auslander, M.: Representation dimension of Artin algebras.Queen Mary College Lecture Notes (1971). Zbl 0331.16026
Reference: [2] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition.Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A. No. 150 (1958), 1-60. Zbl 0080.25702, MR 0096700
Reference: [3] Nakayama, T.: On Frobeniusean algebras.II, Ann. Math. 42 (1941), 1-21. Zbl 0026.05801, MR 0004237, 10.2307/1968984
Reference: [4] Tachikawa, H.: Quasi-Frobenius rings and generalizations.LNM 351 (1973). Zbl 0271.16004
Reference: [5] Tachikawa, H.: QF rings and QF associated graded rings.Proc. 38th Symposium on Ring Theory and Representation Theory, Japan 45-51.\hfil http://fuji.cec.yamanash.ac.jp/ring/oldmeeting/2005/reprint2005/abst-3-2.pdf. MR 2264126
Reference: [6] Thrall, R. M.: Some generalizations of quasi-Frobenius algebras.Trans. Amer. Math. Soc. 64 (1948), 173-183. Zbl 0041.01001, MR 0026048
.

Files

Files Size Format View
CzechMathJ_59-2009-3_2.pdf 225.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo