Previous |  Up |  Next

Article

Title: A note on weakly Lindelöf determined Banach spaces (English)
Author: González, A.
Author: Montesinos, V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 613-621
Summary lang: English
.
Category: math
.
Summary: We prove that weakly Lindelöf determined Banach spaces are characterized by the existence of a ``full'' projectional generator. Some other results pertaining to this class of Banach spaces are given. (English)
Keyword: projectional generator
Keyword: projectional resolution of the identity
Keyword: weakly Lindelöf determined Banach space
Keyword: Markushevich base
Keyword: Corson compacta
MSC: 46B20
MSC: 46B26
idZBL: Zbl 1224.46032
idMR: MR2545644
.
Date available: 2010-07-20T15:29:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140504
.
Reference: [1] Amir, D., Lindenstrauss, J.: The structure of weakly compact sets in Banach spaces.Ann. of Math. 88 (1968), 35-44. Zbl 0164.14903, MR 0228983, 10.2307/1970554
Reference: [2] Fabian, M.: Gateaux Differentiability of Convex Functions and Topology.Weak Asplund Spaces, John Wiley & Sons, New York (1997). Zbl 0883.46011, MR 1461271
Reference: [3] Fabian, M., Godefroy, G., Montesinos, V., Zizler, V.: Weakly compactly generated spaces and their relatives.J. Math. Anal. and Appl. 297 (2004), 419-455. MR 2088670, 10.1016/j.jmaa.2004.02.015
Reference: [4] Fabian, M., Habala, P., Hájek, P., Pelant, J., Montesinos, V., Zizler, V.: Functional Analysis and Infinite Dimensional Geometry.Canad. Math. Soc. Books in Mathematics, 8, Springer-Verlag, New York (2001). MR 1831176
Reference: [5] Fabian, M., Montesinos, V., Zizler, V.: Weakly compact sets and smooth norms in Banach spaces.Bull. Australian Math. Soc. 65 (2002), 223-230. Zbl 1007.46011, MR 1898536, 10.1017/S0004972700020268
Reference: [6] Fremlin, D. H.: Consequences of Martin's axioms.Cambridge University Press (1984).
Reference: [7] Gurarii, V. I., Kadec, M. I.: Minimal systems and quasicomplements in Banach spaces.Soviet Math. Dokl. 3 (1962), 966-968.
Reference: [8] Hájek, P., Montesinos, V., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces.CMS Books in Mathematics, Canadian Mathematical Society, Springer Verlag (2007). MR 2359536
Reference: [9] Rychtář, J.: On biorthogonal systems and Mazur's intersection property.Bull. Austr. Math. Soc. 69 (2004), 107-111. Zbl 1054.46008, MR 2040053, 10.1017/S0004972700034298
Reference: [10] Terenzi, P.: Extension of uniformly minimal M-basic sequences in Banach spaces.J. London Math. Soc. 27 (1983), 500-506. Zbl 0488.46011, MR 0697142, 10.1112/jlms/s2-27.3.500
Reference: [11] Terenzi, P.: On the theory of fundamental bounded biorthogonal systems in Banach spaces.Trans. Amer. Math. Soc. 2 (1987), 497-511. MR 0869217, 10.1090/S0002-9947-1987-0869217-4
Reference: [12] Valdivia, M.: Simultaneous resolutions of the identity operator in normed spaces.Collect. Math. 42 (1991), 265-284. Zbl 0788.47024, MR 1203185
Reference: [13] Valdivia, M.: Biorthogonal systems in certain Banach spaces.Revista Mat. Univ. Complut. Madrid 9 (1996), 191-220. Zbl 0872.46007, MR 1435783
Reference: [14] Vanderwerff, J.: Extensions of Markuševič bases.Math. Z. 219 (1995), 21-30. Zbl 0823.46014, MR 1340846, 10.1007/BF02572347
Reference: [15] Zizler, V.: Nonseparable Banach spaces.Handbook of Banach Spaces, Volume II 1143-1816, Elsevier Sci. B.V. (2003). Zbl 1041.46009, MR 1999608
.

Files

Files Size Format View
CzechMathJ_59-2009-3_5.pdf 272.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo