Previous |  Up |  Next

Article

Title: The eavesdropping number of a graph (English)
Author: Stuart, Jeffrey L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 623-636
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a connected, undirected graph without loops and without multiple edges. For a pair of distinct vertices $u$ and $v$, a minimum $\{u,v\}$-separating set is a smallest set of edges in $G$ whose removal disconnects $u$ and $v$. The edge connectivity of $G$, denoted $\lambda (G)$, is defined to be the minimum cardinality of a minimum $\{u,v\}$-separating set as $u$ and $v$ range over all pairs of distinct vertices in $G$. We introduce and investigate the eavesdropping number, denoted $\varepsilon (G)$, which is defined to be the maximum cardinality of a minimum $\{u,v\}$-separating set as $u$ and $v$ range over all pairs of distinct vertices in $G$. Results are presented for regular graphs and maximally locally connected graphs, as well as for a number of common families of graphs. (English)
Keyword: eavesdropping number
Keyword: edge connectivity
Keyword: maximally locally connected
Keyword: cartesian product
Keyword: vertex disjoint paths
MSC: 05C40
idZBL: Zbl 1224.05273
idMR: MR2545645
.
Date available: 2010-07-20T15:30:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140505
.
Reference: [1] Cai, C.: The maximal size of graphs with at most $k$ edge-disjoint paths connecting any two adjacent vertices.Discrete Math. 85 (1990), 43-52. Zbl 0749.05041, MR 1078310, 10.1016/0012-365X(90)90161-A
Reference: [2] Chartrand, G., Harary, F.: Graphs with prescribed connectivities.Theory of Graphs, Proc. Colloq., Tihany, Hungary, 1966 Académiai Kiadói Budapest (1968), 61-63. Zbl 0186.27503, MR 0236048
Reference: [3] Chartrand, G., Oellermann, O. R.: Applied and Algorithmic Graph Theory.McGraw-Hill New York (1993). MR 1211413
Reference: [4] Fricke, G., Oellermann, O. R., Swart, H. C.: The edge-connectivity, average edge-connectivity and degree conditions.Manuscript (2000).
Reference: [5] Hellwig, A.: Maximally connected graphs and digraphs.Doctoral dissertation Rheinisch-Westfälishchen Technische Hochschule Aachen (2005).
Reference: [6] Hellwig, A., Volkmann, L.: Maximally local-edge-connected graphs and digraphs.Ars. Comb. 72 (2004), 295-306. Zbl 1082.05055, MR 2069069
Reference: [7] Huck, A., Okamura, H.: Counterexamples to a conjecture of Mader about cycles through specified vertices in $n$-edge-connected graphs.Graphs Comb. 8 (1992), 253-258. Zbl 0770.05067, MR 1185404, 10.1007/BF02349962
Reference: [8] Mader, W.: Existenz gewisser Konfigurationen in $n$-gesättigten Graphen und in Graphen genügend grosser Kantendichte.Math. Ann. 194 (1971), 295-312 German. Zbl 0213.50801, MR 0289344, 10.1007/BF01350130
Reference: [9] Whitney, H.: Congruent graphs and the connectivity of graphs.Am. J. Math. 54 (1932), 150-168. Zbl 0003.32804, MR 1506881, 10.2307/2371086
Reference: [10] Xu, J.-M., Yang, C.: Connectivity of Cartesian product graphs.Discrete Math. 306 (2006), 159-165. Zbl 1085.05042, MR 2202083, 10.1016/j.disc.2005.11.010
.

Files

Files Size Format View
CzechMathJ_59-2009-3_6.pdf 279.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo