Previous |  Up |  Next

Article

Title: A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces (English)
Author: Schumacher, Katrin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 637-648
Summary lang: English
.
Category: math
.
Summary: Given a domain $\Omega $ of class $C^{k,1}$, $k\in \Bbb N $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial- {\partial x_n})\alpha (x',0)= - N(x')$ and that still is of class $C^{k,1}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^{k,1}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights. (English)
Keyword: chart
Keyword: coordinate transformation
Keyword: normal vector
Keyword: normal derivative
Keyword: extension theorem
Keyword: Muckenhoupt weight
MSC: 35A25
MSC: 35A99
MSC: 46E35
MSC: 46N20
MSC: 47A20
idZBL: Zbl 1218.47019
idMR: MR2545646
.
Date available: 2010-07-20T15:31:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140506
.
Reference: [1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}: $H_\infty$-calculus.J. Math. Fluid Mech. 7 223-260 (2005). Zbl 1083.35085, MR 2177128, 10.1007/s00021-004-0117-7
Reference: [2] Chua, S.-K.: Extension theorems on weighted Sobolev spaces.Indiana Univ. Math. J. 41 1027-1076 (1992). Zbl 0767.46025, MR 1206339, 10.1512/iumj.1992.41.41053
Reference: [3] Curbera, G. P., García-Cuerva, J., Martell, J. M., Pérez, C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals.Adv. Math. 203 256-318 (2006). MR 2231047, 10.1016/j.aim.2005.04.009
Reference: [4] Evans, L. C.: Partial Differential Equations.American Mathematical Society, Providence (1998). Zbl 0902.35002, MR 1625845
Reference: [5] Farwig, R., Galdi, G. P., Sohr, H.: Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data.Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64 113-136 (2005). MR 2185213, 10.1007/3-7643-7385-7_7
Reference: [6] Farwig, R., Sohr, H.: Weighted {$L^q$}-theory for the Stokes resolvent in exterior domains.J. Math. Soc. Japan 49 251-288 (1997). MR 1601373, 10.2969/jmsj/04920251
Reference: [7] Fröhlich, A.: Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenr�umen.Shaker Verlag, Aachen (2001).
Reference: [8] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces I: Weighted estimates for the Stokes resolvent problem in a half space.J. Math. Fluid Mech. 5 166-199 (2003). MR 1982327, 10.1007/s00021-003-0080-8
Reference: [9] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces {II}: Weighted resolvent estimates and maximal {$L^p$}-regularity.Math. Ann. 339 287-316 (2007). MR 2324721, 10.1007/s00208-007-0114-2
Reference: [10] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-\frac1q,q}$.Math. Ann. 331 41-74 (2005). Zbl 1064.35133, MR 2107439, 10.1007/s00208-004-0573-7
Reference: [11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted norm inequalities and related topics.North Holland, Amsterdam (1985). MR 0807149
Reference: [12] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces.Math. Z. 178 297-329 (1981). Zbl 0473.35064, MR 0635201, 10.1007/BF01214869
Reference: [13] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Prague (1967). MR 0227584
Reference: [14] Schumacher, K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces.Ann. dell'Univ. di Ferrara 54 123-144 (2008). Zbl 1179.35225, MR 2403378, 10.1007/s11565-008-0038-0
Reference: [15] Slobodeckiǐ, L. N.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations.Leningrad. Gos. Ped. Inst. Učen. Zap. 197 54-112 (1958). MR 0203222
Reference: [16] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J. (1993). Zbl 0821.42001, MR 1232192
.

Files

Files Size Format View
CzechMathJ_59-2009-3_7.pdf 278.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo