Previous |  Up |  Next

Article

Title: Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces (English)
Author: Qin, Xiaolong
Author: Kang, Shin Min
Author: Shang, Meijuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 695-706
Summary lang: English
.
Category: math
.
Summary: Let $K$ be a nonempty closed convex subset of a real Hilbert space $H$ such that $K\pm K\subset K$, $T\: K\rightarrow H$ a $k$-strict pseudo-contraction for some $0\leq k<1$ such that $F(T)=\{x\in K\: x=Tx\}\neq \emptyset $. Consider the following iterative algorithm given by $$ \forall x_1\in K,\quad x_{n+1}=\alpha _n\gamma f(x_n)+\beta _nx_n+((1-\beta _n)I-\alpha _n A)P_KSx_n,\quad n\geq 1, $$ where $S\: K\rightarrow H$ is defined by $Sx=kx+(1-k)Tx$, $P_K$ is the metric projection of $H$ onto $K$, $A$ is a strongly positive linear bounded self-adjoint operator, $f$ is a contraction. It is proved that the sequence $\{x_n\}$ generated by the above iterative algorithm converges strongly to a fixed point of $T$, which solves a variational inequality related to the linear operator $A$. Our results improve and extend the results announced by many others. (English)
Keyword: Hilbert space
Keyword: nonexpansive mapping
Keyword: strict pseudo-contraction
Keyword: iterative algorithm
Keyword: fixed point
MSC: 47H09
MSC: 47H10
MSC: 47J25
idZBL: Zbl 1218.47115
idMR: MR2545650
.
Date available: 2010-07-20T15:34:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140510
.
Reference: [1] Acedo, G. L., Xu, H. K.: Iterative methods for strict pseudo-contractions in Hilbert spaces.Nonlinear Anal. 67 (2007), 2258-2271. Zbl 1133.47050, MR 2331876, 10.1016/j.na.2006.08.036
Reference: [2] Browder, F. E.: Fixed point theorems for noncompact mappings in Hilbert spaces.Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276. MR 0178324, 10.1073/pnas.53.6.1272
Reference: [3] Browder, F. E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces.Arch. Ration. Mech. Anal. 24 (1967), 82-90. Zbl 0148.13601, MR 0206765, 10.1007/BF00251595
Reference: [4] Browder, F. E., Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert space.J. Math. Anal. Appl. 20 (1967), 197-228. Zbl 0153.45701, MR 0217658, 10.1016/0022-247X(67)90085-6
Reference: [5] Halpern, B.: Fixed points of nonexpansive maps.Bull. Amer. Math. Soc. 73 (1967), 957-961. MR 0218938, 10.1090/S0002-9904-1967-11864-0
Reference: [6] Lions, P. L.: Approximation de points fixes de contractions.C.R. Acad. Sci. Paris Ser. A--B 284 (1977), A1357--A1359. Zbl 0349.47046, MR 0470770
Reference: [7] Marino, G., Xu, H. K.: Weak and strong convergence theorems for $k$-strict pseudo-contractions in Hilbert spaces.J. Math. Anal. Appl. 329 (2007), 336-349. MR 2306805, 10.1016/j.jmaa.2006.06.055
Reference: [8] Marino, G., Xu, H. K.: A general iterative method for nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 318 (2006), 43-52. Zbl 1095.47038, MR 2210870, 10.1016/j.jmaa.2005.05.028
Reference: [9] Moudafi, A.: Viscosity approximation methods for fixed points problems.J. Math. Anal. Appl. 241 (2000), 46-55. Zbl 0957.47039, MR 1738332, 10.1006/jmaa.1999.6615
Reference: [10] Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces.Fixed Point Theory Appl. (2005), 103-123. Zbl 1123.47308, MR 2172156
Reference: [11] Wittmann, R.: Approximation of fixed points of nonexpansive mappings.Arch. Math. 58 (1992), 486-491. Zbl 0797.47036, MR 1156581, 10.1007/BF01190119
Reference: [12] Xu, H. K.: An iterative approach to quadratic optimization.J. Optim. Theory Appl. 116 (2003), 659-678. Zbl 1043.90063, MR 1977756, 10.1023/A:1023073621589
Reference: [13] Xu, H. K.: Iterative algorithms for nonlinear operators.J. London Math. Soc. 66 (2002), 240-256. Zbl 1013.47032, MR 1911872, 10.1112/S0024610702003332
Reference: [14] Xu, H. K.: Another control condition in an iterative method for nonexpansive mappings.Bull. Austral. Math. Soc. 65 (2002), 109-113. Zbl 1030.47036, MR 1889384, 10.1017/S0004972700020116
Reference: [15] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings.J. Math. Anal. Appl. 298 (2004), 279-291. Zbl 1061.47060, MR 2086546, 10.1016/j.jmaa.2004.04.059
Reference: [16] Zhou, H.: Convergence theorems of fixed points for $k$-strict pseudo-contractions in Hilbert space.Nonlinear Analysis 69 (2008), 456-462. MR 2426262, 10.1016/j.na.2007.05.032
.

Files

Files Size Format View
CzechMathJ_59-2009-3_11.pdf 256.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo