Previous |  Up |  Next

Article

Title: An extension theorem for modular measures on effect algebras (English)
Author: Barbieri, Giuseppina
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 707-719
Summary lang: English
.
Category: math
.
Summary: We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting. (English)
Keyword: effect algebras
Keyword: modular measures
Keyword: extension
Keyword: Vitali-Hahn-Saks theorem
Keyword: Nikodým theorem
Keyword: decomposition theorem
Keyword: control theorems
Keyword: range
Keyword: Liapunoff theorem
MSC: 06C15
MSC: 28E99
idZBL: Zbl 1224.28037
idMR: MR2545651
.
Date available: 2010-07-20T15:36:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140511
.
Reference: [1] Avallone, A.: Lattice uniformities on orthomodular structures.Math. Slovaca 51 (2001), 403-419. Zbl 1015.28014, MR 1864109
Reference: [2] Avallone, A.: Cafiero and Nikodým boundedness theorems in effect algebras.Ital. J. Pure Appl. Math. 20 (2006), 203-214. Zbl 1121.28015, MR 2247423
Reference: [3] Avallone, A.: Separating points of measures on effect algebras.Math. Slovaca 57 (2007), 129-140. Zbl 1150.28009, MR 2357812, 10.2478/s12175-007-0004-9
Reference: [4] Avallone, A., Barbieri, G., Vitolo, P.: Hahn decomposition of modular measures and applications.Comment. Math. Prace Mat. 43 (2003), 149-168. Zbl 1043.28009, MR 2029889
Reference: [5] Avallone, A., Barbieri, G., Vitolo, P., Weber, H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem.(to appear) in Algebra Universalis. Zbl 1171.28004, MR 2480629
Reference: [6] Avallone, A., Basile, A.: On a Marinacci uniqueness theorem for measures.J. Math. Anal. Appl. 286 (2003), 378-390. Zbl 1052.28011, MR 2008838, 10.1016/S0022-247X(03)00274-9
Reference: [7] Avallone, A., Simone, A. De, Vitolo, P.: Effect algebras and extensions of measures.Bollettino U.M.I. 9-B (2006), 423-444. Zbl 1115.28010, MR 2233145
Reference: [8] Avallone, A., Rinauro, S., Vitolo, P.: Boundedness and convergence theorems in effect algebras.Tatra Mountains Math. Publ. 37 (2007), 1-16. Zbl 1164.28002, MR 2372445
Reference: [9] Avallone, A., Vitolo, P.: Decomposition and control theorems for measures on effect algebras.Sci. Math. Japon 58 (2003), 1-14. MR 1987813
Reference: [10] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras.Order 20 (2003), 67-77. Zbl 1030.03047, MR 1993411
Reference: [11] Basile, A.: Controls of families of finitely additive functions.Ricerche Mat. 35 (1986), 291-302. Zbl 0648.28007, MR 0932439
Reference: [12] Barbieri, G.: A note on fuzzy measures.J. Electr. Eng. 52 (2001), 67-70. Zbl 1045.28012, MR 1748120
Reference: [13] Barbieri, G.: Lyapunov's theorem for measures on $D$-posets.Internat. J. Theoret. Phys. 43 (2004), 1613-1623. Zbl 1081.81007, MR 2108298
Reference: [14] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges.A Study of Finitely Additive Measures. Academic Press, Inc. New York (1983). MR 0751777
Reference: [15] Bennett, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics.Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24 (1994), 1331-1352. MR 1304942
Reference: [16] Diestel, J., Uhl, J. J.: Vector Measures.Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977). Zbl 0369.46039, MR 0453964
Reference: [17] Dvurecenskij, A., Pulmannovà, S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Bratislava (2000). MR 1861369
Reference: [18] Fischer, W., Schoeler, U.: The range of vector measures in Orlicz spaces.Studia Math. 59 (1976), 53-61. MR 0427580
Reference: [19] Fleischer, I., Traynor, T.: Equivalence of group-valued measures on an abstract lattice.Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 549-556. Zbl 0514.28004, MR 0628641
Reference: [20] Foulis, D., Greechie, R. J., Pulmannová, S.: The center of an effect algebra.Order 12 (1995), 91-106. MR 1336539
Reference: [21] Kadets, V. M.: A remark on Lyapunov's theorem on a vector measure.Russian Funktsional. Anal. i Prilozhen. 25 (1991), 78-80 Translation in Funct. Anal. Appl. 25 (1992), 295-297. MR 1167727
Reference: [22] Kadets, V. M., Shekhtman, G.: Lyapunov's theorem for $l\sb p$-valued measures.Russian Algebra i Analiz 4 (1992), 148-154 Translation in St. Petersburg Math. J. 4 (1993), 961-966. MR 1202728
Reference: [23] Kluvánek, I.: The range of a vector-valued measure.Math. Systems Theory 7 (1973), 44-54. MR 0322131
Reference: [24] Shapiro, J.: On convexity and compactness in $F$-spaces with bases.Indiana Univ. Math. J. 21 (1971/72), 1073-1090. MR 0295037
Reference: [25] Uhl, J.: The range of a vector-valued measure.Proc. Amer. Math. Soc. 23 (1969), 158-163. Zbl 0182.46903, MR 0264029
Reference: [26] Weber, H.: Group- and vector-valued $s$-bounded contents.Lecture Notes in Math. 1089, Springer (1984), 181-198. Zbl 0552.28011, MR 0786697
Reference: [27] Weber, H.: Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodým's boundedness theorem.Rocky Mountain J. Math. 16 (1986), 253-275. Zbl 0604.28006, MR 0843053
Reference: [28] Weber, H.: Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings.Ann. Mat. Pura Appl. 160 (1991), 1992 547-570. Zbl 0790.06006, MR 1163215
Reference: [29] Weber, H.: Uniform lattices. II. Order continuity and exhaustivity.Ann. Mat. Pura Appl. 165 (1993), 133-158. Zbl 0799.06014, MR 1271416
Reference: [30] Weber, H.: On modular functions.Funct. Approx. Comment. Math. 24 (1996), 35-52. Zbl 0887.06011, MR 1453447
Reference: [31] Weber, H.: Uniform lattices and modular functions.Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159-182. Zbl 0989.28007, MR 1694416
Reference: [32] Weber, H.: FN-topologies and group-valued measures. Handbook of measure theory, Vol. I, II.703-743 North-Holland, Amsterdam (2002). MR 1954626
Reference: [33] Weber, H.: Two extension theorems. Modular functions on complemented lattices.Czech. Math. J. 52 (2002), 55-74. Zbl 0998.06006, MR 1885457
.

Files

Files Size Format View
CzechMathJ_59-2009-3_12.pdf 289.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo