Title:
|
The order $\sigma $-complete vector lattice of AM-compact operators (English) |
Author:
|
Aqzzouz, Belmesnaoui |
Author:
|
Nouira, Redouane |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
827-834 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice. (English) |
Keyword:
|
AM-compact operator |
Keyword:
|
order continuous norm |
Keyword:
|
discrete vector lattice |
MSC:
|
46A40 |
MSC:
|
46B40 |
MSC:
|
46B42 |
MSC:
|
47B07 |
MSC:
|
47B60 |
idZBL:
|
Zbl 1222.47063 |
idMR:
|
MR2545658 |
. |
Date available:
|
2010-07-20T15:42:06Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140518 |
. |
Reference:
|
[1] Abramovich, Y. A., Wickstead, A. W.: Solutions of several problems in the theory of compact positive operators.Proc. Amer. Math. Soc. 123 (1995), 3021-3026. Zbl 0860.47023, MR 1283534, 10.1090/S0002-9939-1995-1283534-8 |
Reference:
|
[2] Aliprantis, C. D., Burkinshaw, O.: Locally solid Riesz spaces.Academic Press (1978). Zbl 0402.46005, MR 0493242 |
Reference:
|
[3] Aliprantis, C. D., Burkinshaw, O.: Positive compact operators on Banach lattices.Math. Z. 174 (1980), 289-298. Zbl 0425.46015, MR 0593826, 10.1007/BF01161416 |
Reference:
|
[4] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices.Proc. Amer. Math. Soc. 83 (1981), 573-578. Zbl 0452.47038, MR 0627695, 10.1090/S0002-9939-1981-0627695-X |
Reference:
|
[5] Aqzzouz, B., Nouira, R.: Les opérateurs précompacts sur les treillis vectoriels localement convexes-solides.Sci. Math. Jpn. 57 (2003), 279-256. MR 1959985 |
Reference:
|
[6] Chen, Z. L., Wickstead, A. W.: Vector lattices of weakly compact operators on Banach lattices.Trans. Amer. Math. Soc. 352 (1999), 397-412. MR 1641095, 10.1090/S0002-9947-99-02431-9 |
Reference:
|
[7] Fremlin, D. H.: Riesz spaces with the order continuity property I.Proc. Cambr. Phil. Soc. 81 (1977), 31-42. Zbl 0344.46019, MR 0425572, 10.1017/S0305004100000244 |
Reference:
|
[8] Krengel, U.: Remark on the modulus of compact operators.Bull. Amer. Math. Soc. 72 (1966), 132-133. Zbl 0135.36302, MR 0190752, 10.1090/S0002-9904-1966-11452-0 |
Reference:
|
[9] Meyer-Nieberg, P.: Banach lattices.Universitext. Springer-Verlag, Berlin (1991). Zbl 0743.46015, MR 1128093 |
Reference:
|
[10] Robertson, A. P., Robertson, W.: Topological vector spaces.2$^{ {nd}}$ ed., Cambridge University Press, London (1973). Zbl 0251.46002, MR 0350361 |
Reference:
|
[11] Wickstead, A. W.: Dedekind completeness of some lattices of compact operators.Bull. Polish Acad. of Sci. Math. 43 (1995), 297-304. Zbl 0847.47025, MR 1414786 |
Reference:
|
[12] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems.Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752 |
Reference:
|
[13] Zaanen, A. C.: Riesz spaces II.North Holland Publishing Company (1983). Zbl 0519.46001, MR 0704021 |
. |