Previous |  Up |  Next

Article

Title: Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects (English)
Author: Druet, Pierre-Étienne
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 791-825
Summary lang: English
.
Category: math
.
Summary: We consider the problem of influencing the motion of an electrically conducting fluid with an applied steady magnetic field. Since the flow is originating from buoyancy, heat transfer has to be included in the model. The stationary system of magnetohydrodynamics is considered, and an approximation of Boussinesq type is used to describe the buoyancy. The heat sources given by the dissipation of current and the viscous friction are not neglected in the fluid. The vessel containing the fluid is embedded in a larger domain, relevant for the global temperature- and magnetic field- distributions. Material inhomogeneities in this larger region lead to transmission relations for the electromagnetic fields and the heat flux on inner boundaries. In the presence of transparent materials, the radiative heat transfer is important and leads to a nonlocal and nonlinear jump relation for the heat flux. We prove the existence of weak solutions, under the assumption that the imposed velocity at the boundary of the fluid remains sufficiently small. (English)
Keyword: nonlinear elliptic system
Keyword: magnetohydrodynamics
Keyword: natural interface conditions
Keyword: nonlinear heat equation
Keyword: nonlocal radiation boundary conditions
MSC: 35A01
MSC: 35D30
MSC: 35J55
MSC: 35Q30
MSC: 35Q35
MSC: 35Q60
MSC: 76W05
idZBL: Zbl 1224.35337
idMR: MR2545657
.
Date available: 2010-07-20T15:41:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140517
.
Reference: [1] Bossavit, A.: Electromagnétisme en vue de la modélisation.Springer, Berlin, Heidelberg, New York (2004). MR 1616583
Reference: [2] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability.Dover Publications Inc., New York (1981).
Reference: [3] Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique.Archs ration. Mech. Analysis 46 241-279 (1972). Zbl 0264.73027, MR 0346289, 10.1007/BF00250512
Reference: [4] Druet, P.-E.: Higher integrability of the lorentz force for weak solutions to Maxwell's equations in complex geometries.Preprint 1270 of the Weierstrass Institute for Applied mathematics and Stochastics, Berlin (2007). Available in pdf-format at\hfil http://www.wias-berlin.de/publications/preprints/1270.
Reference: [5] Druet, P.-E.: Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L^p$ ($p\geq1$).Math. Meth. Appl. Sci. 32 135-166 (2008). MR 2478911, 10.1002/mma.1029
Reference: [6] Galdi, G.-P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol I. Linearized steady problems.Springer, New York (1994). MR 1284205
Reference: [7] Gray, Donald D., Giorgini, A.: The validity of the Boussinesq approximation for liquids and gases.Int. J. Heat Mass Transfer 19 545-551 (1976). Zbl 0328.76066, 10.1016/0017-9310(76)90168-X
Reference: [8] Giaquinta, M., Modica, L., Souček, J.: Cartesian Currents in the Calculus of Variations. Vol. I. Cartesian Currents.Springer, Berlin, Heidelberg (1998). MR 1645086
Reference: [9] Hansen, O.: The radiosity equation on polyhedral domains.Logos Verlag, Berlin (2002). Zbl 1005.65143
Reference: [10] Kufner, A., John, O., Fučik, S.: Function spaces.Academia Prague, Prague (1977). MR 0482102
Reference: [11] Klein, O., Philip, P., Sprekels, J.: Modelling and simulation of sublimation growth in sic bulk single crystals.Interfaces and Free Boundaries 6 295-314 (2004). MR 2095334, 10.4171/IFB/101
Reference: [12] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris (1969). Zbl 0189.40603, MR 0259693
Reference: [13] Ladyzhenskaja, O. A., Solonnikov, V. A.: Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid.Trudy Mat. Inst. Steklov 59 115-173 (1960), Russian. MR 0170130
Reference: [14] Laitinen, M., Tiihonen, T.: Conductive-radiative heat transfer in grey materials.Quart. Appl. Math. 59 737-768 (2001). MR 1866555, 10.1090/qam/1866555
Reference: [15] Meir, A. J., Schmidt, P. G.: Variational methods for stationary {MHD} flow under natural interface conditions.Nonlinear Analysis. Theory, Methods and Applications 26 659-689 (1996). Zbl 0853.76095, MR 1362743, 10.1016/0362-546X(94)00308-5
Reference: [16] Meir, A. J., Schmidt, P. G.: On electromagnetically and thermally driven liquid-metal flows.Nonlinear analysis 47 3281-3294 (2001). Zbl 1042.76597, MR 1979224, 10.1016/S0362-546X(01)00445-X
Reference: [17] Naumann, J.: Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids.In Progress Nonlin. Diff. Equs. Appl., volume 64, pages 373-390, Basel, 2005. Birkhäuser. Zbl 1122.35115, MR 2185227
Reference: [18] Rakotoson, J.-M.: Quasilinear elliptic problems with measures as data.Diff. Integral Eqs. 4 449-457 (1991). Zbl 0834.35056, MR 1097910
Reference: [19] Tiihonen, T.: Stefan-Boltzmann radiation on non-convex surfaces.Math. Meth. in Appl. Sci. 20 47-57 (1997). MR 1429330, 10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B
Reference: [20] Voigt, A.: Numerical Simulation of Industrial Crystal Growth.PhD thesis, {Technische-Universität} München, Germany (2001). Zbl 1009.82001
Reference: [21] Zeidler, E.: Nonlinear functional analysis and its applications. II/B.Springer Verlag, New York (1990). Zbl 0684.47029, MR 1033498
.

Files

Files Size Format View
CzechMathJ_59-2009-3_18.pdf 753.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo