Previous |  Up |  Next

Article

Keywords:
topological invariants; genus; Euler characteristic; irreducibility criterion
Summary:
In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.
References:
[1] Arslan, F., Sertöz, S.: Genus calculations of complete intersections. Commun. Algebra 26 (1998), 2463-2471. DOI 10.1080/00927879808826291 | MR 1627868
[2] Buchweitz, R.-O., Greuel, G.-M.: Milnor number and deformation of complex curve singulaties. Invent. Math. 58 (1980), 241-281. DOI 10.1007/BF01390254 | MR 0571575
[3] Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer New York (1992). MR 1194180
[4] Greuel, G. M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214 (1975), 235-266 German. DOI 10.1007/BF01352108 | MR 0396554 | Zbl 0285.14002
[5] Harris, J.: On Severi problem. Invent. Math. 84 (1986), 445-461. DOI 10.1007/BF01388741 | MR 0837522
[6] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52. Springer New York-Heidelberg-Berlin (1977). MR 0463157
[7] Hironaka, H.: On the arithmetic genera and the effective genera of algebraic curves. Mem. Coll. Sci., Univ. Kyoto, Ser. A 30 (1957), 177-195. MR 0090850 | Zbl 0099.15702
[8] Kleiman, S. L.: A generalized Teissier-Plücker formula. Contemp. Math. 162 (1994), 249-260. DOI 10.1090/conm/162/01536 | MR 1272702 | Zbl 0820.14039
[9] Kline, M.: Mathematical Thought from Ancient to Modern Times. Clarendon Press, Oxford Univ. Press New York (1990). MR 0472307 | Zbl 0864.01001
[10] Looijenga, E. J. N.: Isolated Singular Points on Complete Intersections. London Mathematical Society Lecture Note, Ser. 77. Cambridge University Press Cambridge (1984). MR 0747303
[11] Mumford, D.: Algebraic Geometry. I: Complex Projective Varieties. Springer Berlin (1995). MR 1344216 | Zbl 0821.14001
[12] Severi, F.: Il Teorema di Riemann-Roch per curve, superficie e varietá. Ergebnisse der Math. Questioni Collegate. Springer Berlin-Göttingen-Heidelberg (1958), Italian. MR 0094357
Partner of
EuDML logo