Previous |  Up |  Next

Article

Title: The semiring of 1-preserving endomorphisms of a semilattice (English)
Author: Ježek, Jaroslav
Author: Kepka, Tomáš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 999-1003
Summary lang: English
.
Category: math
.
Summary: We prove that the semirings of 1-preserving and of 0,1-preserving endomorphisms of a semilattice are always subdirectly irreducible and we investigate under which conditions they are simple. Subsemirings are also investigated in a similar way. (English)
Keyword: semilattice
Keyword: semiring
Keyword: subdirectly irreducible
Keyword: simple
MSC: 06A12
MSC: 16Y60
idZBL: Zbl 1224.06007
idMR: MR2563572
.
Date available: 2010-07-20T15:53:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140531
.
Reference: [1] Bashir, R. El, Hurt, J., Jančařík, A., Kepka, T.: Simple commutative semirings.J. Algebra 236 (2001), 277-306. MR 1808355, 10.1006/jabr.2000.8483
Reference: [2] Bashir, R. El, Kepka, T.: Congruence-simple semirings.Semigroup Forum 75 (2007), 588-608. Zbl 1155.16034, MR 2353284, 10.1007/s00233-007-0725-7
Reference: [3] Ježek, J., Kepka, T., Maróti, M.: The endomorphism semiring of a semilattice.Semigroup Forum 78 (2009), 253-261. MR 2486638, 10.1007/s00233-008-9045-9
Reference: [4] Maze, G., Monico, C., Rosenthal, J.: Public Key Cryptography based on semigroup actions.Adv. Math. Commun. 1 (2007), 489-502. MR 2354050, 10.3934/amc.2007.1.489
Reference: [5] McKenzie, R., McNulty, G., Taylor,, W.: Algebras, Lattices, Varieties, Volume I.Wadsworth & Brooks/Cole, Monterey, CA (1987). MR 0883644
Reference: [6] Mitchell, S. S., Fenoglio, P. B.: Congruence-free commutative semirings.Semigroup Forum 37 (1988), 79-91. Zbl 0636.16020, MR 0929445, 10.1007/BF02573125
Reference: [7] Monico, C.: On finite congruence-simple semirings.J. Algebra 271 (2004), 846-854. Zbl 1041.16041, MR 2025553, 10.1016/j.jalgebra.2003.09.034
Reference: [8] Vandiver, H. S.: Note on a simple type of algebras in which the cancellation law of addition does not hold.Bull. Amer. Math. Soc. 40 (1934), 916-920. MR 1562999, 10.1090/S0002-9904-1934-06003-8
Reference: [9] Zumbrägel, J.: Classification of finite congruence-simple semirings with zero.Preprint. MR 2431815
.

Files

Files Size Format View
CzechMathJ_59-2009-4_10.pdf 209.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo