Previous |  Up |  Next

Article

Title: Potentially $K_m-G$-graphical sequences: A survey (English)
Author: Lai, Chunhui
Author: Hu, Lili
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1059-1075
Summary lang: English
.
Category: math
.
Summary: The set of all non-increasing nonnegative integer sequences $\pi =$ ($d(v_1 ),d(v_2 ), \dots , d(v_n )$) is denoted by ${\rm NS}_n$. A sequence $\pi \in {\rm NS}_n$ is said to be graphic if it is the degree sequence of a simple graph $G$ on $n$ vertices, and such a graph $G$ is called a realization of $\pi $. The set of all graphic sequences in ${\rm NS}_n$ is denoted by ${\rm GS}_n$. A graphical sequence $\pi $ is potentially $H$-graphical if there is a realization of $\pi $ containing $H$ as a subgraph, while $\pi $ is forcibly $H$-graphical if every realization of $\pi $ contains $H$ as a subgraph. Let $K_k$ denote a complete graph on $k$ vertices. Let $K_m-H$ be the graph obtained from $K_m$ by removing the edges set $E(H)$ of the graph $H$ ($H$ is a subgraph of $K_m$). This paper summarizes briefly some recent results on potentially $K_m-G$-graphic sequences and give a useful classification for determining $\sigma (H,n)$. (English)
Keyword: graph
Keyword: degree sequence
Keyword: potentially $K_m-G$-graphic sequences
MSC: 05C07
MSC: 05C35
idZBL: Zbl 1224.05105
idMR: MR2563577
.
Date available: 2010-07-20T16:01:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140536
.
Reference: [1] Bollobás, B.: Extremal Graph Theory.Academic Press, London (1978). MR 0506522
Reference: [2] Chen, Gang: Potentially $C\sb 6$-graphic sequences.J. Guangxi Univ. Nat. Sci. Ed. 28 (2003), 119-124. MR 1997256
Reference: [3] Chen, Gang: Characterize the potentially $K_{1,2,2}$-graphic sequences.Journal of Qingdao University of Science and Technology 27 (2006), 86-88.
Reference: [4] Chen, Gang: The smallest degree sum that yields potentially fan graphical sequences.J. Northwest Norm. Univ., Nat. Sci. 42 (2006), 27-30. Zbl 1103.05302, MR 2253937
Reference: [5] Chen, Gang: An extremal problem on potentially $K_{r,s,t}$-graphic sequences.J. YanTai University 19 (2006), 245-252. MR 2260663
Reference: [6] Chen, Gang: Potentially $K_{3,s}-ke$ graphical sequences.Guangxi Sciences 13 (2006), 164-171.
Reference: [7] Chen, Gang: A note on potentially $K_{1,1,t}$-graphic sequences.Australasian J. Combin. 37 (2007), 21-26. Zbl 1121.05034, MR 2284364
Reference: [8] Chen, Gang, Li, Xining: On potentially $K_{1,t}+e$-graphic sequences.J. Zhangzhou Teach. Coll. 20 (2007), 5-7. Zbl 1174.05339, MR 2668610
Reference: [9] Chen, Gang, Yin, Jianhua: The smallest degree sum that yields potentially $W_5$-graphic sequences.J. XuZhou Normal University 21 (2003), 5-7. Zbl 1036.05501, MR 1987158
Reference: [10] Chen, Gang, Yin, Jianhua, Fan, Yingmei: Potentially $\sb kC\sb 6$-graphic sequences.J. Guangxi Norm. Univ. Nat. Sci. 24 (2006), 26-29. MR 2259980
Reference: [11] Chen, Guantao, Ferrara, Michael, Gould, Ronald J., Schmitt, John R.: Graphic sequences with a realization containing a complete multipartite subgraph, accepted by Discrete Mathematics..
Reference: [12] Erdös, P., Gallai, T.: Graphs with given degrees of vertices.Math. Lapok 11 (1960), 264-274.
Reference: [13] Erdös, P., Jacobson, M. S., Lehel, J.: Graphs realizing the same degree sequences and their respective clique numbers.Graph Theory Combinatorics and Application, Vol. 1 (Y. Alavi et al., eds.), John Wiley and Sons, Inc., New York (1991), 439-449. MR 1170797
Reference: [14] Eschen, Elaine M., Niu, Jianbing: On potentially $K_4-e$-graphic sequences.Australasian J. Combin. 29 (2004), 59-65. Zbl 1049.05027, MR 2037333
Reference: [15] Ferrara, Michael J.: Graphic sequences with a realization containing a union of cliques.Graphs and Combinatorics 23 (2007), 263-269. Zbl 1123.05028, MR 2320581, 10.1007/s00373-007-0737-9
Reference: [16] Ferrara, M., Gould, R., Schmitt, J.: Potentially $K_s^t$-graphic degree sequences, submitted..
Reference: [17] Ferrara, M., Gould, R., Schmitt, J.: Graphic sequences with a realization containing a friendship graph.Ars Combinatoria 85 (2007), 161-171. MR 2359288
Reference: [18] Ferrara, M., Jacobson, M., Schmitt, J., Siggers, M.: Potentially $H$-bigraphic sequences, submitted..
Reference: [19] Gould, Ronald J., Jacobson, Michael S., Lehel, J.: Potentially $G$-graphical degree sequences.Combinatorics, graph theory, and algorithms, Vol. I, II (Kalamazoo, MI, 1996), 451-460, New Issues Press, Kalamazoo, MI, 1999. MR 1985076
Reference: [20] Gupta, Gautam, Joshi, Puneet, Tripathi, Amitabha: Graphic sequences of trees and a problem of Frobenius.Czech. Math. J. 57 (2007), 49-52. Zbl 1174.05023, MR 2309947, 10.1007/s10587-007-0042-z
Reference: [21] Hu, Lili, Lai, Chunhui: On potentially $K_5-C_4$-graphic sequences, accepted by Ars Combinatoria..
Reference: [22] Hu, Lili, Lai, Chunhui: On potentially $K_5-Z_4$-graphic sequences, submitted..
Reference: [23] Hu, Lili, Lai, Chunhui: On potentially $K_5-E_3$-graphic sequences, accepted by Ars Combinatoria..
Reference: [24] Hu, Lili, Lai, Chunhui: On Potentially 3-regular graph graphic Sequences, accepted by Utilitas Mathematica..
Reference: [25] Hu, Lili, Lai, Chunhui, Wang, Ping: On potentially $K_5-H$-graphic sequences, accepted by Czech. Math. J..
Reference: [26] Huang, Qin: On potentially $K_m-e$-graphic sequences.J. ZhangZhou Teachers College 15 (2002), 26-28. MR 1952471
Reference: [27] Huang, Qin: On potentially $K_5-e$-graphic sequences.J. XinJiang University 22 (2005), 276-284. MR 2175912
Reference: [28] Kleitman, D. J., Wang, D. L.: Algorithm for constructing graphs and digraphs with given valences and factors.Discrete Math. 6 (1973), 79-88. MR 0327559, 10.1016/0012-365X(73)90037-X
Reference: [29] Lai, Chunhui: On potentially $C_k$-graphic sequences.J. ZhangZhou Teachers College 11 (1997), 27-31.
Reference: [30] Lai, Chunhui: A note on potentially $K_4-e$ graphical sequences.Australasian J. of Combinatorics 24 (2001), 123-127. Zbl 0983.05025, MR 1852813
Reference: [31] Lai, Chunhui: Characterize the potentially $K_4-e$ graphical sequences.J. ZhangZhou Teachers College 15 (2002), 53-59. MR 1709888
Reference: [32] Lai, Chunhui: The Smallest Degree Sum that Yields Potentially $C_k$-graphic Sequences.J. Combin. Math. Combin. Comput. 49 (2004), 57-64. MR 2054962
Reference: [33] Lai, Chunhui: An extremal problem on potentially $K_{p,1,\cdots,1}$-graphic sequences.J. Zhangzhou Teachers College 17 (2004), 11-13. MR 2164060
Reference: [34] Lai, Chunhui: An extremal problem on potentially $K_{p,1,1}$-graphic sequences.Discrete Mathematics and Theoretical Computer Science 7 (2005), 75-80. Zbl 1153.05021, MR 2164060
Reference: [35] Lai, Chunhui: An extremal problem on potentially $K_m-C_4$-graphic sequences.Journal of Combinatorial Mathematics and Combinatorial Computing 61 (2007), 59-63. Zbl 1139.05016, MR 2322201
Reference: [36] Lai, Chunhui: An extremal problem on potentially $K_m-P_k$-graphic sequences, accepted by International Journal of Pure and Applied Mathematics..
Reference: [37] Lai, Chunhui: The smallest degree sum that yields potentially $K_{r+1}-Z$-graphical Sequences, accepted by Ars Combinatoria..
Reference: [38] Lai, Chunhui, Hu, Lili: An extremal problem on potentially $K_{r+1}-H$-graphic sequences, accepted by Ars Combinatoria..
Reference: [39] Lai, Chunhui, Sun, Yuzhen: An extremal problem on potentially $K_{r+1}-(kP_2\cup tK_2)$-graphic sequences.International Journal of Applied Mathematics & Statistics 14 (2009), 30-36. MR 2524881
Reference: [40] Lai, Chunhui, Yan, Guiying: On potentially $K_{r+1}-U$-graphical Sequences, accepted by Utilitas Mathematica..
Reference: [41] Li, Jiongsheng, Luo, Rong: Potentially $_3C_l$-Graphic Sequences.J. Univ. Sci. Technol. China 29 (1999), 1-8. MR 1707604
Reference: [42] Li, Jiongsheng, Luo, Rong, Liu, Yunkai: An extremal problem on potentially $_3C_l$-graphic sequences.J. Math. Study 31 (1998), 362-369. Zbl 0920.05043, MR 1685466
Reference: [43] Li, Jiongsheng, Song, Zi-xia: The smallest degree sum that yields potentially $P_k$-graphical sequences.J. Graph Theory 29 (1998), 63-72. MR 1644418, 10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A
Reference: [44] Li, Jiongsheng, Song, Zi-xia: On the potentially $P_k$-graphic sequences.Discrete Math. 195 (1999), 255-262. MR 1663863
Reference: [45] Li, Jiongsheng, Song, Zi-xia: An extremal problem on the potentially $P_k$-graphic sequences.Discrete Math. 212 (2000), 223-231. MR 1748652, 10.1016/S0012-365X(99)00289-7
Reference: [46] Li, Jiongsheng, Song, Zi-xia, Luo, Rong: The Erdös-Jacobson-Lehel conjecture on potentially $P_k$-graphic sequence is true.Science in China (Series A) 41 (1998), 510-520. MR 1663175, 10.1007/BF02879940
Reference: [47] Li, Jiongsheng, Song, Zi-xia, Wang, Ping: The Erdos-Jacobson-Lehel conjecture about potentially $P\sb k$-graphic sequences.J. China Univ. Sci. Tech. 28 (1998), 1-9. MR 1633669
Reference: [48] Li, Jiongsheng, Yin, Jianhua: Avariation of an extremal theorem due to Woodall.Southeast Asian Bull. Math. 25 (2001), 427-434. MR 1933948, 10.1007/s100120100006
Reference: [49] Li, Jiongsheng, Yin, Jianhua: On potentially $A\sb {r,s}$-graphic sequences.J. Math. Study 34 (2001), 1-4. MR 1828034
Reference: [50] Li, Jiongsheng, Yin, Jianhua: Extremal graph theory and degree sequences.Adv. Math. 33 (2004), 273-283. MR 2081838
Reference: [51] Li, Jiong Sheng, Yin, Jianhua: The threshold for the Erdos, Jacobson and Lehel conjecture to be true.Acta Math. Sin. (Engl. Ser.) 22 (2006), 1133-1138. MR 2245244, 10.1007/s10114-005-0676-4
Reference: [52] Liu, Mingjing, Hu, Lili: On Potentially $K_5-Z_5$ graphic sequences.J. Zhangzhou Normal University 57 (2007), 20-24. MR 2563577
Reference: [53] Luo, Rong: On potentially $C_k$-graphic sequences.Ars Combinatoria 64 (2002), 301-318. MR 1914218
Reference: [54] Luo, Rong, Warner, Morgan: On potentially $K_k$-graphic sequences.Ars Combin. 75 (2005), 233-239. Zbl 1075.05021, MR 2133225
Reference: [55] Mubayi, Dhruv: Graphic sequences that have a realization with large clique number.J. Graph Theory 34 (2000), 20-29. Zbl 0953.05013, MR 1753064
Reference: [56] Schmitt, J. R., Ferrara, M.: An Erdös-Stone Type Conjecture for Graphic Sequences.Electronic Notes in Discrete Mathematics 28 (2007), 131-135. MR 2323956, 10.1016/j.endm.2007.01.018
Reference: [57] Xu, Zhenghua, Hu, Lili: Characterize the potentially $K_{1,4}+e$ graphical sequences.ZhangZhou Teachers College 55 (2007), 4-8. MR 2563577
Reference: [58] Yin, Jianhua: The smallest degree sum that yields potentially $K_{1,1,3}$-graphic sequences.J. HaiNan University 22 (2004), 200-204. MR 2229587
Reference: [59] Yin, Jianhua: Some new conditions for a graphic sequence to have a realization with prescribed clique size, submitted..
Reference: [60] Yin, Jianhua, Chen, Gang, Chen, Guoliang: On potentially $\sb kC\sb l$-graphic sequences.J. Combin. Math. Combin. Comput. 61 (2007), 141-148. MR 2322209
Reference: [61] Yin, Jianhua, Chen, Gang: On potentially $K_{r_1,r_2,\cdots,r_m}$-graphic sequences.Util. Math. 72 (2007), 149-161. MR 2306237
Reference: [62] Yin, Jianhua, Chen, Gang, Schmitt, John R.: Graphic Sequences with a realization containing a generalized Friendship Graph.Discrete Mathematics 308 (2008), 6226-6232. MR 2464911, 10.1016/j.disc.2007.11.075
Reference: [63] Yin, Jianhua, Li, Jiongsheng: The smallest degree sum that yields potentially $K_{r,r}$-graphic sequences.Science in China Ser A (2002), 45 694-705. Zbl 1099.05505, MR 1915880
Reference: [64] Yin, Jianhua, Li, Jiongsheng: On the threshold in the Erdos-Jacobson-Lehel problem.Math. Appl. 15 (2002), 123-128. MR 1889152
Reference: [65] Yin, Jianhua, Li, Jiongsheng: An extremal problem on the potentially $K_{r,s}$-graphic sequences.Discrete Math. (2003), 260 295-305. MR 1948398
Reference: [66] Yin, Jianhua, Li, Jiongsheng: Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size.Discrete Math. 301 (2005), 218-227. MR 2171314, 10.1016/j.disc.2005.03.028
Reference: [67] Yin, Jianhua, Li, Jiongsheng: Potentially $K_{r_1,r_2,\cdots,r_l,r,s}$-graphic sequences.Discrete Mathematics 307 (2007), 1167-1177. MR 2292544, 10.1016/j.disc.2006.07.037
Reference: [68] Yin, Jianhua, Li, Jiongsheng, Chen, Guoliang: The smallest degree sum that yields potentially $_3C_l$-graphic sequences.Discrete Mathematics 270 (2003), 319-327. MR 1997908, 10.1016/S0012-365X(03)00137-7
Reference: [69] Yin, Jianhua, Li, Jiongsheng, Chen, Guoliang: A variation of a classical Turn-type extremal problem.Eur. J. Comb. 25 (2004), 989-1002. MR 2083451, 10.1016/j.ejc.2003.12.011
Reference: [70] Yin, Jianhua, Li, Jiongsheng, Chen, Guoliang: The smallest degree sum that yields potentially $K_{2,s}$-graphic sequences.Ars Combinatoria 74 (2005), 213-222. MR 2119003
Reference: [71] Yin, Jianhua, Li, Jiongsheng, Mao, Rui: An extremal problem on the potentially $K_{r+1}-e$-graphic sequences.Ars Combinatoria 74 (2005), 151-159. MR 2118998
Reference: [72] Yin, Mengxiao: The smallest degree sum that yields potentially $K_{r+1}-K_3$-graphic sequences.Acta Math. Appl. Sin. Engl. Ser. 22 (2006), 451-456. Zbl 1106.05031, MR 2229587, 10.1007/s10255-006-0321-8
Reference: [73] Yin, Mengxiao, Yin, Jianhua: On potentially $H$-graphic sequences.Czech. Math. J. 57 (2007), 705-724. MR 2337625, 10.1007/s10587-007-0108-y
.

Files

Files Size Format View
CzechMathJ_59-2009-4_15.pdf 288.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo