Previous |  Up |  Next

Article

Title: Matlis reflexive and generalized local cohomology modules (English)
Author: Mafi, Amir
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1095-1102
Summary lang: English
.
Category: math
.
Summary: Let $(R,\mathfrak m )$ be a complete local ring, $\mathfrak a $ an ideal of $R$ and $N$ and $L$ two Matlis reflexive $R$-modules with $\mathop{{\rm Supp}} (L)\subseteq V(\mathfrak a )$. We prove that if $M$ is a finitely generated $R$-module, then $\mathop{{\rm Ext}}\nolimits_R^i(L,H_{\mathfrak a }^j(M,N))$ is Matlis reflexive for all $i$ and $j$ in the following cases: (a) $\mathop{{\rm dim}} R/{\mathfrak a }=1$; (b) $\mathop{{\rm cd}} (\mathfrak a )=1$; where $\mathop{{\rm cd}} $ is the cohomological dimension of $\mathfrak a $ in $R$; (c) $\mathop{{\rm dim}} R\leq 2$. In these cases we also prove that the Bass numbers of $H_{\mathfrak a }^j(M,N)$ are finite. (English)
Keyword: Bass numbers
Keyword: generalized local cohomology modules
Keyword: Matlis reflexive
MSC: 13D07
MSC: 13D45
MSC: 13E99
idZBL: Zbl 1224.13016
idMR: MR2563580
.
Date available: 2010-07-20T16:04:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140539
.
Reference: [1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge University Press Cambridge (1998). Zbl 0903.13006, MR 1613627
Reference: [2] Belshoff, R., Slattery, S. P., Wickham, C.: Finiteness properties for Matlis reflexive modules.Commun. Algebra 24 (1996), 1371-1376. Zbl 0873.13012, MR 1380599, 10.1080/00927879608825640
Reference: [3] Belshoff, R., Slattery, S. P., Wickham, C.: The local cohomology modules of Matlis reflexive modules are almost cofinite.Proc. Am. Math. Soc. 124 (1996), 2649-2654. Zbl 0863.13005, MR 1326995, 10.1090/S0002-9939-96-03326-6
Reference: [4] Belshoff, R., Wickham, C.: A note on local duality.Bull. Lond. Math. Soc. 29 (1997), 25-31. Zbl 0891.13005, MR 1416402, 10.1112/S0024609396001713
Reference: [5] Delfino, D.: On the cofiniteness of local cohomology modules.Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. Zbl 0806.13005, MR 1253283, 10.1017/S0305004100071929
Reference: [6] Delfino, D., Marley, T.: Cofinite modules and local cohomology.J. Pure Appl. Algebra 121 (1997), 45-52. Zbl 0893.13005, MR 1471123, 10.1016/S0022-4049(96)00044-8
Reference: [7] Divaani-Aazar, K., Sazeedeh, R.: Cofiniteness of generalized local cohomology modules.Colloq. Math. 99 (2004), 283-290. Zbl 1072.13011, MR 2079733, 10.4064/cm99-2-12
Reference: [8] Divaani-Aazar, K., Sazeedeh, R., Tousi, M.: On vanishing of generalized local cohomology modules.Algebra Colloq. 12 (2005), 213-218. Zbl 1065.13007, MR 2127246, 10.1142/S1005386705000209
Reference: [9] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [10] Herzog, J.: Komplexe Auflösungen und Dualitat in der lokalen Algebra.Habilitationsschrift Universität Regensburg Regensburg (1970), German.
Reference: [11] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493
Reference: [12] Kawakami, S., Kawasaki, K.-I.: On the finiteness of Bass numbers of generalized local cohomology modules.Toyama Math. J. 29 (2006), 59-64. Zbl 1141.13307, MR 2333640
Reference: [13] Kawasaki, K.-I.: Cofiniteness of local cohomology modules for principal ideals.Bull. Lond. Math. Soc. 30 (1998), 241-246. Zbl 0930.13013, MR 1608094, 10.1112/S0024609397004347
Reference: [14] Khashyarmanesh, K., Khosh-Ahang, F.: On the local cohomology of Matlis reflexive modules.Commun. Algebra 36 (2008), 665-669. Zbl 1133.13018, MR 2388029, 10.1080/00927870701724102
Reference: [15] Mafi, A.: A generalization of the finiteness problem in local cohomology modules.Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), 159-164. Zbl 1171.13011, MR 2526419, 10.1007/s12044-009-0016-1
Reference: [16] Mafi, A., Saremi, H.: Cofinite modules and generalized local cohomology.Houston J. Math (to appear). Zbl 1185.13019, MR 2577138
Reference: [17] Melkersson, L.: Properties of cofinite modules and applications to local cohomology.Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. Zbl 0921.13009, MR 1656785, 10.1017/S0305004198003041
Reference: [18] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037
Reference: [19] Ooishi, A.: Matlis duality and width of a module.Hiroshima Math. J. 6 (1976), 573-587. MR 0422243, 10.32917/hmj/1206136213
Reference: [20] Strooker, J.: Homological Questions in Local Algebra. Lecture Notes Series 145.Cambridge University Press Cambridge (1990). MR 1074178
Reference: [21] Yassemi, S.: Generalized section functors.J. Pure Appl. Algebra 95 (1994), 103-119. Zbl 0843.13005, MR 1289122, 10.1016/0022-4049(94)90121-X
Reference: [22] Yoshida, K. I.: Cofiniteness of local cohomology modules for ideals of dimension one.Nagoya Math. J. 147 (1997), 179-191. Zbl 0899.13018, MR 1475172, 10.1017/S0027763000006371
.

Files

Files Size Format View
CzechMathJ_59-2009-4_18.pdf 233.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo