Previous |  Up |  Next

Article

Title: On the diameter of the Banach-Mazur set (English)
Author: Godefroy, Gilles
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 95-100
Summary lang: English
.
Category: math
.
Summary: On every subspace of $l_{\infty }(\mathbb N)$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin's Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb N)$ is infinite. This provides a partial answer to a question asked by Johnson and Odell. (English)
Keyword: Banach-Mazur diameter
Keyword: elastic Banach spaces
Keyword: Martin's Maximum axiom
MSC: 03E50
MSC: 46B03
MSC: 46B20
MSC: 46B26
idZBL: Zbl 1224.46012
idMR: MR2595073
.
Date available: 2010-07-20T16:17:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140552
.
Reference: [1] Bačák, M., Hájek, P.: Mazur intersection property for Asplund spaces.J. Funct. Anal. 255 (2008), 2090-2094. MR 2462587, 10.1016/j.jfa.2008.05.016
Reference: [2] Finet, C., Godefroy, G.: Biorthogonal systems and big quotient spaces.Contemp. Math. 85 (1989), 87-110. Zbl 0684.46016, MR 0983383, 10.1090/conm/085/983383
Reference: [3] Foreman, M., Magidor, M., Shelah, S.: Martin's Maximum, saturated ideals, and nonregular ultrafilters.Ann. Math. 127 (1988), 1-47. Zbl 0645.03028, MR 0924672, 10.2307/1971415
Reference: [4] Fremlin, D. H., Sersouri, A.: On $\omega$-independence in separable Banach spaces.Q. J. Math. 39 (1988), 323-331. Zbl 0662.46018, MR 0957274, 10.1093/qmath/39.3.323
Reference: [5] Godefroy, G., Louveau, A.: Axioms of determinacy and biorthogonal systems.Isr. J. Math. 67 (1989), 109-116. Zbl 0712.46004, MR 1021365, 10.1007/BF02764903
Reference: [6] Godefroy, G., Talagrand, M.: Espaces de Banach représentables.Isr. J. Math. 41 (1982), 321-330. Zbl 0498.46016, MR 0657864, 10.1007/BF02760538
Reference: [7] Granero, A. S., Jimenez-Sevilla, M., Montesinos, A., Moreno, J. P., Plichko, A. N.: On the Kunen-Shelah properties in Banach spaces.Stud. Math. 157 (2003), 97-120. MR 1980708, 10.4064/sm157-2-1
Reference: [8] Hájek, P., Santalucia, V. Montesinos, Vanderwerff, J., Zízler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics.Springer New York (2008). MR 2359536
Reference: [9] Jimenéz-Sevilla, M., Moreno, J. P.: Renorming Banach spaces with the Mazur intersection property.J. Funct. Anal. 144 (1997), 486-504. MR 1432595, 10.1006/jfan.1996.3014
Reference: [10] Johnson, W. B., Odell, E.: The diameter of the isomorphism class of a Banach space.Ann. Math. 162 (2005), 423-437. Zbl 1098.46011, MR 2178965, 10.4007/annals.2005.162.423
Reference: [11] Kalton, N. J.: Independence in separable Banach spaces.Contemp. Math. 85 (1989), 319-323. Zbl 0678.46011, MR 0983390, 10.1090/conm/085/983390
Reference: [12] Negrepontis, S.: Banach Spaces and Topology. Handbook of Set-Theoretic Topology.K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 1045-1142. MR 0776642
Reference: [13] Todorcevic, S.: Biorthogonal systems and quotient spaces via Baire category methods.Math. Ann. 335 (2006), 687-715. Zbl 1112.46015, MR 2221128, 10.1007/s00208-006-0762-7
Reference: [14] Todorcevic, S.: Biorthogonal systems and quotient spaces via Baire category methods.Math. Ann. 335 (2006), 687-715. Zbl 1112.46015, MR 2221128, 10.1007/s00208-006-0762-7
.

Files

Files Size Format View
CzechMathJ_60-2010-1_7.pdf 221.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo