Title:
|
On the diameter of the Banach-Mazur set (English) |
Author:
|
Godefroy, Gilles |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
95-100 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
On every subspace of $l_{\infty }(\mathbb N)$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin's Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb N)$ is infinite. This provides a partial answer to a question asked by Johnson and Odell. (English) |
Keyword:
|
Banach-Mazur diameter |
Keyword:
|
elastic Banach spaces |
Keyword:
|
Martin's Maximum axiom |
MSC:
|
03E50 |
MSC:
|
46B03 |
MSC:
|
46B20 |
MSC:
|
46B26 |
idZBL:
|
Zbl 1224.46012 |
idMR:
|
MR2595073 |
. |
Date available:
|
2010-07-20T16:17:23Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140552 |
. |
Reference:
|
[1] Bačák, M., Hájek, P.: Mazur intersection property for Asplund spaces.J. Funct. Anal. 255 (2008), 2090-2094. MR 2462587, 10.1016/j.jfa.2008.05.016 |
Reference:
|
[2] Finet, C., Godefroy, G.: Biorthogonal systems and big quotient spaces.Contemp. Math. 85 (1989), 87-110. Zbl 0684.46016, MR 0983383, 10.1090/conm/085/983383 |
Reference:
|
[3] Foreman, M., Magidor, M., Shelah, S.: Martin's Maximum, saturated ideals, and nonregular ultrafilters.Ann. Math. 127 (1988), 1-47. Zbl 0645.03028, MR 0924672, 10.2307/1971415 |
Reference:
|
[4] Fremlin, D. H., Sersouri, A.: On $\omega$-independence in separable Banach spaces.Q. J. Math. 39 (1988), 323-331. Zbl 0662.46018, MR 0957274, 10.1093/qmath/39.3.323 |
Reference:
|
[5] Godefroy, G., Louveau, A.: Axioms of determinacy and biorthogonal systems.Isr. J. Math. 67 (1989), 109-116. Zbl 0712.46004, MR 1021365, 10.1007/BF02764903 |
Reference:
|
[6] Godefroy, G., Talagrand, M.: Espaces de Banach représentables.Isr. J. Math. 41 (1982), 321-330. Zbl 0498.46016, MR 0657864, 10.1007/BF02760538 |
Reference:
|
[7] Granero, A. S., Jimenez-Sevilla, M., Montesinos, A., Moreno, J. P., Plichko, A. N.: On the Kunen-Shelah properties in Banach spaces.Stud. Math. 157 (2003), 97-120. MR 1980708, 10.4064/sm157-2-1 |
Reference:
|
[8] Hájek, P., Santalucia, V. Montesinos, Vanderwerff, J., Zízler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics.Springer New York (2008). MR 2359536 |
Reference:
|
[9] Jimenéz-Sevilla, M., Moreno, J. P.: Renorming Banach spaces with the Mazur intersection property.J. Funct. Anal. 144 (1997), 486-504. MR 1432595, 10.1006/jfan.1996.3014 |
Reference:
|
[10] Johnson, W. B., Odell, E.: The diameter of the isomorphism class of a Banach space.Ann. Math. 162 (2005), 423-437. Zbl 1098.46011, MR 2178965, 10.4007/annals.2005.162.423 |
Reference:
|
[11] Kalton, N. J.: Independence in separable Banach spaces.Contemp. Math. 85 (1989), 319-323. Zbl 0678.46011, MR 0983390, 10.1090/conm/085/983390 |
Reference:
|
[12] Negrepontis, S.: Banach Spaces and Topology. Handbook of Set-Theoretic Topology.K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 1045-1142. MR 0776642 |
Reference:
|
[13] Todorcevic, S.: Biorthogonal systems and quotient spaces via Baire category methods.Math. Ann. 335 (2006), 687-715. Zbl 1112.46015, MR 2221128, 10.1007/s00208-006-0762-7 |
Reference:
|
[14] Todorcevic, S.: Biorthogonal systems and quotient spaces via Baire category methods.Math. Ann. 335 (2006), 687-715. Zbl 1112.46015, MR 2221128, 10.1007/s00208-006-0762-7 |
. |