Previous |  Up |  Next

Article

Title: The triadjoint of an orthosymmetric bimorphism (English)
Author: Toumi, Mohamed Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 85-94
Summary lang: English
.
Category: math
.
Summary: Let $A$ and $B$ be two Archimedean vector lattices and let $( A^{\prime }) _n'$ and $( B') _n'$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^{\ast \ast \ast }\colon ( A') _n'\times ( A') _n'\rightarrow ( B') _n'$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras. (English)
Keyword: almost $f$-algebra orthosymmetric bimorphism
MSC: 06F25
MSC: 47B65
idZBL: Zbl 1224.06036
idMR: MR2595072
.
Date available: 2010-07-20T16:16:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140551
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Academic Press. Orlando (1985). Zbl 0608.47039, MR 0809372
Reference: [2] Arens, R.: The adjoint of a bilinear operation.Proc. Amer. Math. Soc. 2 (1951), 839-848. Zbl 0044.32601, MR 0045941, 10.1090/S0002-9939-1951-0045941-1
Reference: [3] Basly, M., Triki, A.: ${ff}$-algèbres réticulées.Preprint, Tunis (1988). MR 0964828
Reference: [4] Bernau, S. J., Huijsmans, C. B.: The order bidual of almost $f$-algebras and $d$-algebras.Trans. Amer. Math. Soc. 347 (1995), 4259-4275. Zbl 0851.46003, MR 1308002
Reference: [5] Bernau, S. J., Huijsmans, C. B.: Almost $f$-algebras and $d$-algebras.Math. Proc. Cam. Phil. Soc. 107 (1990), 287-308. Zbl 0707.06009, MR 1027782, 10.1017/S0305004100068560
Reference: [6] Buskes, G., Rooij, A. Van: Almost $f$-algebras: Structure and the Dedekind completion.Positivity 3 (2000), 233-243. MR 1797126, 10.1023/A:1009874426887
Reference: [7] Buskes, G., Rooij, A. Van: Almost $f$-algebras: commutativity and Cauchy Schwartz inequality.Positivity 3 (2000), 227-131. MR 1797125, 10.1023/A:1009826510957
Reference: [8] Grobler, J. J.: Commutativity of the Arens product in lattice ordered algebras.Positivity 3 (1999), 357-364. Zbl 0945.46003, MR 1721545, 10.1023/A:1009880911903
Reference: [9] Huijsmans, C. B.: Lattice-ordered Algebras and $f$-algebras: A survey in Studies in Economic Theory 2.Springer Verlag, Berlin-Heidelberg-New York (1990), 151-169. MR 1307423
Reference: [10] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces I.North-Holland. Amsterdam (1971).
Reference: [11] Meyer-Nieberg, P.: Banach Lattices.Springer-Verlag, Berlin Heidelberg New York (1991). Zbl 0743.46015, MR 1128093
Reference: [12] Schaefer, H. H.: Banach Lattices and Positive Operators.Grundlehren. Math. Wiss. Vol. 215, Springer, Berlin (1974). Zbl 0296.47023, MR 0423039
Reference: [13] Scheffold, E.: ${ff}$-Banachverbandsalgebren.Math. Z. 177 (1981), 183-205. Zbl 0439.46037, MR 0612873
Reference: [14] Triki, A.: On algebra homomorphism in complex $f$-algebras.Comment. Math. Univ. Carolin. 43 (2002), 23-31. MR 1903304
Reference: [15] Zaanen, A. C.: Riesz spaces II.North-Holland, Amsterdam (1983). Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CzechMathJ_60-2010-1_6.pdf 248.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo