Previous |  Up |  Next

Article

Title: Schur multiplier characterization of a class of infinite matrices (English)
Author: Marcoci, A.
Author: Marcoci, L.
Author: Persson, L. E.
Author: Popa, N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 183-193
Summary lang: English
.
Category: math
.
Summary: Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1<p<\infty $, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed. (English)
Keyword: infinite matrices
Keyword: Schur multipliers
Keyword: discrete Sawyer duality principle
Keyword: Bennett factorization
Keyword: Wiener algebra and Hardy type inequalities
MSC: 15A48
MSC: 15A60
MSC: 26D15
MSC: 47B35
idZBL: Zbl 1224.15066
idMR: MR2595082
.
Date available: 2010-07-20T16:26:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140561
.
Reference: [1] Bennett, G.: Factorizing the Classical Inequalities.Memoirs of the American Mathematical Society, Number 576 (1996). Zbl 0857.26009, MR 1317938
Reference: [2] Bennett, G.: Schur multipliers.Duke Math. J. 44 (1977), 603-639. Zbl 0389.47015, MR 0493490
Reference: [3] Barza, S., Kravvaritis, D., Popa, N.: Matriceal Lebesgue spaces and Hölder inequality.J. Funct. Spaces Appl. 3 (2005), 239-249. Zbl 1093.42002, MR 2163625, 10.1155/2005/376150
Reference: [4] Badea, C., Paulsen, V.: Schur multipliers and operator-valued Foguel-Hankel operators.Indiana Univ. Math. J. 50 (2001), 1509-1522. Zbl 1031.47019, MR 1888651, 10.1512/iumj.2001.50.2121
Reference: [5] Barza, S., Persson, L. E., Popa, N.: A Matriceal Analogue of Fejer's theory.Math. Nach. 260 (2003), 14-20. Zbl 1043.15020, MR 2017699, 10.1002/mana.200310100
Reference: [6] Barza, S., Lie, V. D., Popa, N.: Approximation of infinite matrices by matriceal Haar polynomials.Ark. Mat. 43 (2005), 251-269. MR 2173951, 10.1007/BF02384779
Reference: [7] Carro, M. J., Soria, J.: Weighted Lorentz spaces and the Hardy operator.J. Funct. Anal. 112 (1993), 480-494. Zbl 0784.46022, MR 1213148, 10.1006/jfan.1993.1042
Reference: [8] Carro, M. J., Raposo, J. A., Soria, J.: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities.Memoirs of the American Mathematical Society, Number 877 (2007). Zbl 1126.42005, MR 2308059
Reference: [9] Jagers, A. A.: A note on Cesaro sequence spaces.Nieuw Arch. voor Wiskunde 3 (1974), 113-124. Zbl 0286.46017, MR 0348444
Reference: [10] Kufner, A., Persson, L. E.: Weighted Inequalities of Hardy Type.World Scientific Publishing Co., Singapore-New Jersey-London-Hong Kong (2003). Zbl 1065.26018, MR 1982932
Reference: [11] Kufner, A., Maligranda, L., Persson, L. E.: The Hardy Inequality.About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen (2007). MR 2351524
Reference: [12] Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications.Studia Math. 34 (1970), 43-68. Zbl 0189.43505, MR 0270118, 10.4064/sm-34-1-43-67
Reference: [13] Marcoci, A., Marcoci, L.: A new class of linear operators on $\ell^2$ and Schur multipliers for them.J. Funct. Spaces Appl. 5 (2007), 151-164. MR 2319600, 10.1155/2007/949161
Reference: [14] Paulsen, V.: Completely Bounded Maps and Operator Algebras.Cambridge studies in advanced mathematics 78, Cambridge University Press (2002). Zbl 1029.47003, MR 1976867
Reference: [15] Pommerenke, Chr.: Univalent Functions.Hubert, Gottingen (1975). Zbl 0298.30014, MR 0507768
Reference: [16] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces.Studia Math. 96 (1990), 145-158. Zbl 0705.42014, MR 1052631, 10.4064/sm-96-2-145-158
Reference: [17] Schur, J.: Bemerkungen zur Theorie der beschr$\ddot a$nkten Bilinearformen mit unendlich vielen Verandlichen.J. Reine Angew. Math. 140 (1911), 1-28 \JFM 42.0367.01. 10.1515/crll.1911.140.1
Reference: [18] Shapiro, H. S., Shields, A. L.: On some interpolation problems for analytic functions.Amer. J. Math. 83 (1961), 513-532. Zbl 0112.29701, MR 0133446, 10.2307/2372892
Reference: [19] Shapiro, H. S., Shields, A. L.: On the zeros of functions with finite Dirichlet integral and some related function spaces.Math. Zeit. 80 (1962), 217-229. Zbl 0115.06301, MR 0145082, 10.1007/BF01162379
Reference: [20] Styan, G. P. H.: Hadamard products and multivariate statistical analysis.Linear Algebra 6 (1973), 217-240. MR 0318177, 10.1016/0024-3795(73)90023-2
Reference: [21] Shields, A. L., Wallen, J. L.: The commutants of certain Hilbert space operators.Indiana Univ. Math. J. 20 (1971), 777-799. Zbl 0207.13801, MR 0287352, 10.1512/iumj.1971.20.20062
.

Files

Files Size Format View
CzechMathJ_60-2010-1_16.pdf 264.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo