Previous |  Up |  Next

Article

Title: On the blow up criterion for the 2-D compressible Navier-Stokes equations (English)
Author: Jiang, Lingyu
Author: Wang, Yidong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 195-209
Summary lang: English
.
Category: math
.
Summary: Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain. (English)
Keyword: compressible Navier-Stokes equations
Keyword: classical solutions
Keyword: blow up criterion
MSC: 35B44
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
idZBL: Zbl 1224.35317
idMR: MR2595083
.
Date available: 2010-07-20T16:27:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140562
.
Reference: [1] Beale, J. T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations.Comm. Math. Phys. 94 (1984), 61-66. Zbl 0573.76029, MR 0763762, 10.1007/BF01212349
Reference: [2] Choe, H. J., Jin, B. J.: Regularity of weak solutions of the compressible Navier-Stokes equations.J. Korean Math. Soc. 40 (2003), 1031-1050. Zbl 1034.76049, MR 2013486, 10.4134/JKMS.2003.40.6.1031
Reference: [3] Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations.Comm. P. D. E. 22 (1997), 977-1008. Zbl 0885.35089, MR 1452175, 10.1080/03605309708821291
Reference: [4] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations.J. Math. Fluid Mech. 3 (2001), 358-392. MR 1867887, 10.1007/PL00000976
Reference: [5] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing movement of compressible viscous fluids.K$\bar o$dai Math. Sem. Rep. 23 (1971), 60-120. MR 0283426, 10.2996/kmj/1138846265
Reference: [6] Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations.Comm. Math. Phys. 214 (2000), 191-200. Zbl 0985.46015, MR 1794270, 10.1007/s002200000267
Reference: [7] Lions, P. L.: Mathematical Topics in Fluid Mechanics, Vol 2. Compressible Models.Oxford lecture series in Mathematics and its Applications, 10, Oxford Sciences Publications. The Clarendon Press, Oxford University Press, New York (1998). Zbl 0908.76004, MR 1637634
Reference: [8] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion.Publ. RIMS. Kyoto Univ. 13 (1977), 193-253. Zbl 0366.35070, 10.2977/prims/1195190106
Reference: [9] Xin, Z. P.: Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density.Comm. Pure Appl. Math. 51 (1998), 229-240. MR 1488513, 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
Reference: [10] Vaigant, V. A., Kazhikhov, A. V.: On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid.Russian Sibirsk. Mat. Zh. 36 (1995), 1283-1316 translation in it Siberian Math. J. {\it 36} (1995). MR 1375428
.

Files

Files Size Format View
CzechMathJ_60-2010-1_17.pdf 276.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo