Previous |  Up |  Next

Article

Title: Navier-Stokes equations on unbounded domains with rough initial data (English)
Author: Kunstmann, Peer Christian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 297-313
Summary lang: English
.
Category: math
.
Summary: We consider the Navier-Stokes equations in unbounded domains $\Omega \subseteq \mathbb R ^n$ of uniform $C^{1,1}$-type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded $H^\infty $-calculus on such domains, and use a general form of Kato's method. We also obtain information on the corresponding pressure term. (English)
Keyword: Navier-Stokes equations
Keyword: mild solutions
Keyword: Stokes operator
Keyword: extrapolation spaces
Keyword: $H^\infty $-functional calculus
Keyword: general unbounded domains
Keyword: pressure term
MSC: 35K55
MSC: 35Q30
MSC: 76D05
idZBL: Zbl 1224.35319
idMR: MR2657950
.
Date available: 2010-07-20T16:37:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140569
.
Reference: [1] Amann, H.: On the strong solvability of the Navier-Stokes equations.J. Math. Fluid Mech. 2 (2000), 16-98. Zbl 0989.35107, MR 1755865, 10.1007/s000210050018
Reference: [2] Cannone, M.: Ondelettes, paraproduits, et Navier-Stokes.Nouveaux Essais, Paris, Diderot (1995). Zbl 1049.35517, MR 1688096
Reference: [3] Constantin, P., Foias, C.: Navier-Stokes equations.Chicago Lectures in Mathematics, University of Chicago Press (1988). Zbl 0687.35071, MR 0972259
Reference: [4] Farwig, R., Kozono, H., Sohr, H.: An $L^q$-approach to Stokes and Navier-Stokes equations in general domains.Acta Math. 195 (2005), 21-53. MR 2233684, 10.1007/BF02588049
Reference: [5] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains.Arch. Math. 88 (2007), 239-248. Zbl 1121.35097, MR 2305602, 10.1007/s00013-006-1910-8
Reference: [6] Farwig, R., Kozono, H., Sohr, H.: Maximal regularity of the Stokes operator in general unbounded domains of $\Bbb R^n$.H. Amann Functional analysis and evolution equations. The Günter Lumer volume. Basel: Birkhäuser 257-272 (2008). MR 2402733
Reference: [7] Giga, Y.: Domains of fractional powers of the Stokes operator in $L_r$ spaces.Arch. Ration. Mech. Anal. 89 (1985), 251-265. MR 0786549, 10.1007/BF00276874
Reference: [8] Grisvard, P.: Elliptic problems in nonsmooth domains.Monographs and Studies in Mathematics 24, Pitman (1985). Zbl 0695.35060, MR 0775683
Reference: [9] Haak, B. H., Kunstmann, P. C.: Weighted admissibility and wellposedness of linear systems in Banach spaces.SIAM J. Control Optim. 45 (2007), 2094-2118. Zbl 1126.93021, MR 2285716, 10.1137/060656139
Reference: [10] Haak, B. H., Kunstmann, P. C.: On Kato's method for Navier Stokes equations.J. Math. Fluid Mech 11 (2009), 492-535. MR 2574794, 10.1007/s00021-008-0270-5
Reference: [11] Kalton, N. J., Kunstmann, P. C., Weis, L.: Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators.Math. Ann. 336 (2006), 747-801. MR 2255174, 10.1007/s00208-005-0742-3
Reference: [12] Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data.Commun. Partial Differ. Equations 19 (1994), 959-1014. Zbl 0803.35068, MR 1274547, 10.1080/03605309408821042
Reference: [13] Kunstmann, P. C.: Maximal $L^p$-regularity for second order elliptic operators with uniformly continuous coefficients on domains, in Iannelli.Mimmo Evolution equations: applications to physics, industry, life sciences and economics, Basel, Birkhäuser., Prog. Nonlinear Differ. Equ. Appl. Vol. 55 293-305 (2003). MR 2013196
Reference: [14] Kunstmann, P. C.: $H^\infty$-calculus for the Stokes operator on unbounded domains.Arch. Math. 91 (2008), 178-186. MR 2430801, 10.1007/s00013-008-2621-0
Reference: [15] Kunstmann, P. C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus.M. Iannelli, R. Nagel, S. Piazzera Functional Analytic Methods for Evolution Equations, Springer Lecture Notes Math. Vol. 1855 65-311 (2004). MR 2108959, 10.1007/978-3-540-44653-8_2
Reference: [16] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Paris, Dunod (1969). Zbl 0189.40603, MR 0259693
Reference: [17] Meyer, Y.: Wavelets, paraproducts, and Navier-Stokes equations.R. Bott Current developments in mathematics, 1996. Proceedings of the joint seminar, Cambridge, MA, USA 1996. Cambridge, International Press 105-212 (1997). Zbl 0926.35115, MR 1724946
Reference: [18] Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted $L_p$-spaces.Arch. Math. 82 (2004), 415-431. MR 2061448, 10.1007/s00013-004-0585-2
Reference: [19] Sohr, H.: The Navier-Stokes equations.An elementary functional analytic approach, Basel, Birkhäuser (2001). Zbl 1007.35051, MR 1928881
Reference: [20] Triebel, H.: Interpolation, Function Spaces, Differential Operators.North-Holland Mathematical Library. Vol. 18. Amsterdam-New York-Oxford (1978). MR 0503903
.

Files

Files Size Format View
CzechMathJ_60-2010-2_1.pdf 310.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo