Previous |  Up |  Next

Article

Title: Bounds on Laplacian eigenvalues related to total and signed domination of graphs (English)
Author: Shi, Wei
Author: Kang, Liying
Author: Wu, Suichao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 315-325
Summary lang: English
.
Category: math
.
Summary: A total dominating set in a graph $G$ is a subset $X$ of $V(G)$ such that each vertex of $V(G)$ is adjacent to at least one vertex of $X$. The total domination number of $G$ is the minimum cardinality of a total dominating set. A function $f\colon V(G)\rightarrow \{-1,1\}$ is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. The weight of an SDF is the sum of its function values over all vertices. The signed domination number of $G$ is the minimum weight of an SDF on $G$. In this paper we present several upper bounds on the algebraic connectivity of a connected graph in terms of the total domination and signed domination numbers of the graph. Also, we give lower bounds on the Laplacian spectral radius of a connected graph in terms of the signed domination number of the graph. (English)
Keyword: algebraic connectivity
Keyword: Laplacian matrix
Keyword: Laplacian spectral radius
Keyword: signed domination
Keyword: total domination
MSC: 05C50
MSC: 05C69
MSC: 15A18
idZBL: Zbl 1224.05319
idMR: MR2657951
.
Date available: 2010-07-20T16:38:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140571
.
Reference: [1] Archdeacon, D., Ellis-Monaghan, J., Fisher, D., Froncek, D., Lam, P. C. B., Seager, S., Wei, B., Yuster, R.: Some remarks on domination.J. Graph Theory 46 (2004), 207-210. Zbl 1041.05057, MR 2063370, 10.1002/jgt.20000
Reference: [2] Cockayne, E. J., Dawes, R. M., Hedetniemi, S. T.: Total domination in graphs.Networks 10 (1980), 211-219. Zbl 0447.05039, MR 0584887, 10.1002/net.3230100304
Reference: [3] Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., Slater, P. J.: Signed domination number of a graph.In: Graph Theory, Combinatorics, and Applications, John Wiley & Sons (1995), 311-322. MR 1405819
Reference: [4] Fallat, S. M., Kirkland, S., Pati, S.: On graphs with algebraic connectivity equal to minimum edge density.Linear Algebra Appl. 373 (2003), 31-50. Zbl 1026.05075, MR 2022276
Reference: [5] Feng, L., Yu, G., Li, Q.: Minimizing the Laplacian eigenvalues for trees with given domination number.Linear Algebra Appl. 419 (2006), 648-655. Zbl 1110.05060, MR 2277995
Reference: [6] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007
Reference: [7] Grone, R., Merris, R.: The Laplacian spectrum of a graph (II).SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653
Reference: [8] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs.Marcel Dekker, New York (1998). Zbl 0890.05002, MR 1605684
Reference: [9] Henning, M. A., Slater, P. J.: Inequality relation domination parameters in cube graph.Discrete Math. 158 (1996), 87-98. MR 1411112, 10.1016/0012-365X(96)00025-8
Reference: [10] Henning, M. A.: Graphs with large total domination number.J. Graph Theory 35 (2000), 21-45. Zbl 0959.05089, MR 1775793, 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F
Reference: [11] Lu, M., Liu, H., Tian, F.: Bounds of Laplacian spectrum of graphs based on the domination number.Linear Algebra Appl. 402 (2005), 390-396. Zbl 1063.05095, MR 2141097
Reference: [12] Merris, R.: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197/198 (1998), 143-176. MR 1275613
Reference: [13] Nikiforov, V.: Bounds on graph eigenvalues I.Linear Algebra Appl. 420 (2007), 667-671. Zbl 1109.05073, MR 2278241
.

Files

Files Size Format View
CzechMathJ_60-2010-2_2.pdf 257.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo