Previous |  Up |  Next

Article

Title: Cohomology of configuration spaces of complex projective spaces (English)
Author: Sohail, Tanweer
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 411-422
Summary lang: English
.
Category: math
.
Summary: In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces. (English)
Keyword: configuration spaces
Keyword: cohomological algebra
Keyword: complex projective spaces
MSC: 55T10
MSC: 57N65
idZBL: Zbl 1224.55006
idMR: MR2657958
.
Date available: 2010-07-20T16:48:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140578
.
Reference: [1] Arnold, V. I.: The cohomology ring of dyed braids.Mat. Zametki 5 (1969), 227-231. MR 0242196
Reference: [2] Artin, E.: Theory of braids.Ann. of Math. 48 (1947), 101-126. Zbl 0030.17703, MR 0019087, 10.2307/1969218
Reference: [3] Berceanu, B., Markl, M., Papadima, S.: Multiplicative models for configuration spaces of algebraic varieties.Topology 44 (2005), 415-440. Zbl 1062.55017, MR 2114955, 10.1016/j.top.2004.10.002
Reference: [4] Cohen, F. R.: The homology of $C_{n+1}$-spaces, $n \geq 0$.In: The homology of iterated loop spaces, Lect. Notes in Math. 207-351 533 (1976).
Reference: [5] Cohen, F., Taylor, L.: Computations of Gel'fand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces.In Geometric applications of homology theory, I, Lect. Notes in Math. 106-143 657 (1978). MR 0513543
Reference: [6] Fadell, E. R., Hussaini, S. Y.: Geometry and topology of configuration spaces.Springer Monographs in Mathematics. Springer-Verlag Berlin (2001). MR 1802644
Reference: [7] Fulton, W., MacPherson, R.: A compactification of configuration spaces.Ann. Math. 139 (1994), 183-225. Zbl 0820.14037, MR 1259368, 10.2307/2946631
Reference: [8] Kriz, I.: On the rational homotopy type of configuration spaces.Ann. Math. 139 (1994), 227-237. Zbl 0829.55008, MR 1274092, 10.2307/2946581
Reference: [9] Totaro, B.: Configuration spaces of algebraic varieties.Topology 35 (1996), 1057-1067. Zbl 0857.57025, MR 1404924, 10.1016/0040-9383(95)00058-5
.

Files

Files Size Format View
CzechMathJ_60-2010-2_9.pdf 281.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo