Previous |  Up |  Next

Article

Title: On nonmeasurable images (English)
Author: Rałowski, Robert
Author: Żeberski, Szymon
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 423-434
Summary lang: English
.
Category: math
.
Summary: Let $(X,\mathbb I)$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb I $-nonmeasurable, i.e, it is $\mathbb I$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_{\alpha <2^\omega }.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak. (English)
Keyword: nonmeasurable set
Keyword: Bernstein set
Keyword: Polish ideal space
MSC: 03E35
MSC: 03E75
MSC: 28A99
idZBL: Zbl 1224.03028
idMR: MR2657959
.
Date available: 2010-07-20T16:49:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140579
.
Reference: [1] Cichoń, J., Jasiński, A.: A note on algebraic sums of sets of reals.Real Anal. Exchange 28 (2003), 493-497. MR 2010332, 10.14321/realanalexch.28.2.0493
Reference: [2] Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, Cz., {.Z}eberski, Sz.: On nonmeasurable unions.Topology and its Applications 154 (2007), 884-893. MR 2294636
Reference: [3] Ciesielski, K., Fejzić, H., Freiling, C.: Measure zero sets with non-measurable sum.Real Anal. Exchange 27 (2001/02), 783-793. MR 1923168
Reference: [4] Kharazishvili, A.: Some remarks on additive properties of invariant $\sigma$-ideals on the real line.Real Anal. Exchange 21 (1995/96), 715-724. Zbl 0879.28026, MR 1407284
Reference: [5] Kysiak, M.: Nonmeasurable algebraic sums of sets of reals.Colloquium Mathematicum 102 (2005), 113-122. Zbl 1072.28002, MR 2150273, 10.4064/cm102-1-10
Reference: [6] Rałowski, R., {.Z}eberski, Sz.: Complete nonmeasurability in regular families.Houston Journal in Mathematics 34 (2008), 773-780. MR 2448381
Reference: [7] Sierpiński, W.: Sur la question de la measurabilite de la base de M. Hamel.Fundamenta Mathematicae 1 (1920), 105-111 \JFM 47.0180.03. 10.4064/fm-1-1-105-111
Reference: [8] {.Z}eberski, Sz.: On completely nonmeasurable unions.Mathematical Logic Quarterly 53 (2007), 38-42. Zbl 1109.03046, MR 2288888, 10.1002/malq.200610024
.

Files

Files Size Format View
CzechMathJ_60-2010-2_10.pdf 268.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo