Previous |  Up |  Next

Article

Title: An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability (English)
Author: Myers, Timothy
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 621-633
Summary lang: English
.
Category: math
.
Summary: It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals. (English)
Keyword: absolute integrability
Keyword: gauge Integral
Keyword: H-K integral
Keyword: Lebesgue integral
MSC: 26A39
MSC: 26A42
idZBL: Zbl 1224.26027
idMR: MR2672405
.
Date available: 2010-07-20T17:04:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140594
.
Reference: [1] Bartle, R.: Return to the Riemann integral.Am. Math. Mon. 103 (1996), 625-632 . Zbl 0884.26007, MR 1413583, 10.2307/2974874
Reference: [2] Bugajewska, D.: On the equation of $n$th order and the Denjoy integral.Nonlinear Anal. 34 (1998), 1111-1115. Zbl 0948.34003, MR 1637221
Reference: [3] Bugajewska, D., Bugajewski, D.: On nonlinear integral equations and nonabsolute convergent integrals.Dyn. Syst. Appl. 14 (2005), 135-148 . Zbl 1077.45004, MR 2128317
Reference: [4] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral.Ann. Soc. Math. 35 (1995), 61-69 . Zbl 0854.34005, MR 1384852
Reference: [5] Chew, T., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differ. Integral Equ. 4 (1991), 861-868 . Zbl 0733.34004, MR 1108065
Reference: [6] Henstock, R.: Definitions of Riemann type of the variational integral.Proc. Lond. Math. Soc. 11 (1961), 404-418. MR 0132147
Reference: [7] Henstock, R.: The General Theory of Integration.Oxford Math. Monogr., Clarendon Press, Oxford (1991) . Zbl 0745.26006, MR 1134656
Reference: [8] Kurzweil, J.: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter.Czech. Math. J. 7 (1957), 418-449 . Zbl 0090.30002, MR 0111875
Reference: [9] McLeod, R.: The Generalized Riemann Integral.Carus Math. Monogr., no. 20, Mathematical Association of America, Washington (1980) . Zbl 0486.26005, MR 0588510
Reference: [10] Munkres, J.: Analysis on Manifolds.Addison-Wesley Publishing Company, Redwood City, CA (1991) . Zbl 0743.26006, MR 1079066
Reference: [11] Pfeffer, W.: The divergence theorem.Trans. Am. Math. Soc. 295 (1986), 665-685 . Zbl 0596.26007, MR 0833702
Reference: [12] Pfeffer, W.: The multidimensional fundamental theorem of calculus.J. Austral. Math. Soc. (Ser. A) 43 (1987), 143-170 . Zbl 0638.26011, MR 0896622
Reference: [13] Rudin, W.: Principles of Mathematical Analysis.Third Ed., McGraw-Hill, New York (1976) . Zbl 0346.26002, MR 0385023
Reference: [14] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157
Reference: [15] Schwabik, Š.: The Perron integral in ordinary differential equations.Differ. Integral Equ. 6 (1993), 863-882 . Zbl 0784.34006, MR 1222306
Reference: [16] Spivak, M.: Calculus on Manifolds.W. A. Benjamin, Menlo Park, CA (1965). Zbl 0141.05403, MR 0209411
Reference: [17] Stromberg, K.: An Introduction to Classical Real Analysis.Waldworth, Inc (1981). Zbl 0454.26001, MR 0604364
.

Files

Files Size Format View
CzechMathJ_60-2010-3_3.pdf 272.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo