Previous |  Up |  Next

Article

Title: On the mean value of the generalized Dirichlet $L$-functions (English)
Author: Ma, Rong
Author: Yi, Yuan
Author: Zhang, Yulong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 597-620
Summary lang: English
.
Category: math
.
Summary: Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput. (English)
Keyword: generalized Dirichlet $L$-functions
Keyword: mean value properties
Keyword: functional equation
Keyword: asymptotic formula
MSC: 11M20
idZBL: Zbl 1224.11077
idMR: MR2672404
.
Date available: 2010-07-20T17:03:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140593
.
Reference: [1] Berndt, B. C.: Generalized Dirichlet series and Hecke's functional equation.Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. MR 0225732
Reference: [2] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. III.Trans. Amer. Math. Soc. 146 (1969), 323-342. MR 0252330, 10.1090/S0002-9947-1969-0252330-1
Reference: [3] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. IV.Trans. Amer. Math. Soc. 149 (1970), 179-185. Zbl 0207.05504, MR 0260685
Reference: [4] Heath-Brown, D. R.: An asymptotic series for the mean value of Dirichlet $L$-functions.Comment. Math. Helvetici 56 (1981), 148-161. Zbl 0457.10020, MR 0615623, 10.1007/BF02566206
Reference: [5] Zhang, W. P.: On the second mean value of Dirichlet $L$-functions.Chinese Annals of Mathematics 11A (1990), 121-127. MR 1048690
Reference: [6] Zhang, W. P., Yi, Y., He, X. L.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums.Journal of Number Theory 84 (2000), 199-213. Zbl 0958.11061, MR 1795790, 10.1006/jnth.2000.2515
Reference: [7] Yi, Y., Zhang, W. P.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of Gauss sums.Advances in Mathematics 31 (2002), 517-526. MR 1959549
Reference: [8] Balasubramanian, R.: A note on Dirichlet $L$-functions.Acta Arith. 38 (1980), 273-283. MR 0602193, 10.4064/aa-38-3-273-283
Reference: [9] Titchmarsh, E. C.: The Theory of the Riemannn Zeta-function.Oxford (1951). MR 0046485
Reference: [10] Ivic, A.: The Riemann zeta-function.The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). Zbl 0583.10021, MR 0792089
Reference: [11] Pan, C. D., Pan, C. B.: Elements of the Analytic Number Theory.Science Press, Beijing (1991), Chinese.
.

Files

Files Size Format View
CzechMathJ_60-2010-3_2.pdf 333.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo