Previous |  Up |  Next

Article

Title: On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument (English)
Author: Koplatadze, R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 817-833
Summary lang: English
.
Category: math
.
Summary: We study oscillatory properties of solutions of the Emden-Fowler type differential equation $$u^{(n)}(t)+p(t)\big |u(\sigma (t))\big |^\lambda \operatorname{sign} u(\sigma (t))=0,$$ where $0<\lambda <1$, $p\in L_{\rm loc }(\Bbb R_+;\Bbb R)$, $\sigma \in C(\Bbb R_+;\Bbb R_+)$ and $\sigma (t)\ge t$ for $t\in \Bbb R_+$. \endgraf Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. \endgraf Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998). (English)
Keyword: proper solution
Keyword: property {\bf A}
Keyword: property {\bf B}
MSC: 34C10
MSC: 34K11
MSC: 34K15
idZBL: Zbl 1224.34214
idMR: MR2672417
.
Date available: 2010-07-20T17:21:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140606
.
Reference: [1] Kiguradze, I., Stavroulakis, I.: On the oscillation of solutions of higher order Emden-Fowler advanced differential equations.Appl. Anal. 70 (1998), 97-112. Zbl 1013.34068, MR 1671550, 10.1080/00036819808840679
Reference: [2] Kondrat'ev, V. A.: Oscillatory properties of solutions of the equation $y\sp{(n)}+p(x)y=0$.Russian Trudy Moskov. Mat. Obsc. 10 (1961), 419-436. MR 0141842
Reference: [3] Koplatadze, R.: On oscillatory solutions of second order delay differential inequalities.J. Math. Anal. Appl. 42 (1973), 148-157. Zbl 0255.34069, MR 0322313, 10.1016/0022-247X(73)90127-3
Reference: [4] Koplatadze, R.: A note on the oscillation of the solutions of higher order differential inequalities and equations with retarded argument.Russian Differentsial'nye Uravneniya 10 (1974), 1400-1405, 1538. MR 0358026
Reference: [5] Koplatadze, R., Chanturia, T.: Oscillatory properties of differential equations with deviating argument.Russian With Georgian and English summaries. Izdat. Tbilis. Univ., Tbilisi (1977), 115. MR 0492725
Reference: [6] Koplatadze, R.: Some properties of the solutions of nonlinear differential inequalities and equations with retarded argument.Russian Differentsial'nye Uravneniya 12 (1976), 1971-1984. MR 0466843
Reference: [7] Koplatadze, R.: On oscillatory properties of solutions of functional-differential equations.Mem. Differential Equations Math. Phys. 3 (1994), 179 pp. Zbl 0843.34070, MR 1375838
Reference: [8] Koplatadze, R.: On asymptotic behaviour of solutions of functional-differential equations.Equadiff 8 (Bratislava, 1993). Tatra Mt. Math. Publ. 4 (1994), 143-146. Zbl 0809.34081, MR 1298463
Reference: [9] Koplatadze, R.: Quasi-linear functional differential equations with Property A.J. Math. Anal. Appl. 330 (2007), 483-510. MR 2302938, 10.1016/j.jmaa.2006.07.085
Reference: [10] Graef, J., Koplatadze, R., Kvinikadze, G.: Nonlinear functional differential equations with Properties A and B.J. Math. Anal. Appl. 306 (2005), 136-160. Zbl 1069.34088, MR 2132894, 10.1016/j.jmaa.2004.12.034
Reference: [11] Koplatadze, R.: On asymptotic behavior of solutions of Emden-Fowler advanced differential equation.Math. Modeling and Computer Simulation of Material Technologies. Proceedings of the 5-th International Conference Ariel 2 (2008), 731-735.
Reference: [12] Koplatadze, R.: On oscillatory properties of solutions of generalized Emden-Fowler type differential equations.Proc. A. Razmadze Math. Inst. 145 (2007), 117-121. Zbl 1154.34323, MR 2387454
Reference: [13] Koplatadze, R.: On asymptotic behavior of solutions of almost linear and essentially nonlinear differential equations.Nonlinear Anal. Theory, Methods and Appl. (accepted).
Reference: [14] Gramatikopoulos, M. K., Koplatadze, R., Kvinikadze, G.: Linear functional differential equations with Property A.J. Math. Anal. Appl. 284 (2003), 294-314. MR 1996134, 10.1016/S0022-247X(03)00356-1
.

Files

Files Size Format View
CzechMathJ_60-2010-3_15.pdf 282.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo