Title:
|
The Laplacian spectral radius of graphs (English) |
Author:
|
Li, Jianxi |
Author:
|
Shiu, Wai Chee |
Author:
|
Chang, An |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2010 |
Pages:
|
835-847 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs. (English) |
Keyword:
|
graph |
Keyword:
|
Laplacian spectral radius |
Keyword:
|
bounds |
MSC:
|
05C50 |
idZBL:
|
Zbl 1224.05304 |
idMR:
|
MR2672418 |
. |
Date available:
|
2010-07-20T17:22:07Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140607 |
. |
Reference:
|
[1] Bondy, J., Murty, U.: Graph Theory with Applications.MacMillan New York (1976). MR 0411988 |
Reference:
|
[2] Cioabǎ, S.: The spectral radius and the maximum degree of irregular graphs.Electron. J. Combin. 14, $\rm{ Research paper }$ R38 (2007). MR 2320594, 10.37236/956 |
Reference:
|
[3] Haemers, W.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588 |
Reference:
|
[4] Merris, R.: Laplacian matrix of graphs: a survey.Linear Algebra Appl. 197-198 (1994), 143-176. MR 1275613 |
Reference:
|
[5] Liu, B., Shen, J., Wang, X.: On the largest eigenvalue of non-regular graphs.J. Combin. Theory Ser. B. 97 (2007), 1010-1018. Zbl 1125.05062, MR 2354715, 10.1016/j.jctb.2007.02.008 |
Reference:
|
[6] Mohar, B.: Some applications of Laplace eigenvalues of graphs. Notes taken by Martin Juvan.Graph Symmetry: Algebraic Methods and Applications. NATO ASI Ser., Ser. C, Math. Phys. Sci. Vol. 497 G. Hahn et al. Kluwer Academic Publishers Dordrecht (1997), 225-275. Zbl 0883.05096, MR 1468791 |
Reference:
|
[7] Motzkin, T., Straus, E.: Maxima for graphs and a new proof of a theorem of Turán.Canad. J. Math. 17 (1965), 533-540. Zbl 0129.39902, MR 0175813, 10.4153/CJM-1965-053-6 |
Reference:
|
[8] Nikiforov, V.: Bounds on graph eigenvalues II.Linear Algebra Appl. 427 (2007), 183-189. Zbl 1128.05035, MR 2351351 |
Reference:
|
[9] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra. Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003 |
Reference:
|
[10] Stevanovi'c, D.: The largest eigenvalue of nonregular graphs.J. Combin. Theory Ser. B. 91 (2004), 143-146. MR 2047537, 10.1016/j.jctb.2003.12.002 |
Reference:
|
[11] Zhang, X.-D., Luo, R.: The spectral radius of triangle-free graphs.Australas. J. Comb. 26 (2002), 33-39. Zbl 1008.05089, MR 1918140 |
Reference:
|
[12] Zhang, X.-D.: Eigenvector and eigenvalues of non-regular graphs.Linear Algebra Appl. 409 (2005), 79-86. MR 2170268, 10.1016/j.laa.2005.03.020 |
. |