Previous |  Up |  Next

Article

Title: Counting irreducible polynomials over finite fields (English)
Author: Wang, Qichun
Author: Kan, Haibin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 881-886
Summary lang: English
.
Category: math
.
Summary: In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: \[ \pi (x)= \frac q{q - 1}\frac x{{\log _q x}}+ \frac q{(q - 1)^2}\frac x{{\log _q^2 x}}+O\Bigl (\frac {x}{{\log _q^3 x}}\Bigr ),\quad x=q^n\rightarrow \infty \] where $\pi (x)$ denotes the number of monic irreducible polynomials in $F_q [t]$ with norm $ \le x$. (English)
Keyword: finite fields
Keyword: distribution of irreducible polynomials
Keyword: residue
MSC: 11T55
idZBL: Zbl 1224.11086
idMR: MR2672421
.
Date available: 2010-07-20T17:24:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140610
.
Reference: [1] Kruse, M., Stichtenoth, H.: Ein Analogon zum Primzahlsatz fur algebraische Functionenkoper.Manuscripta Math. 69 (1990), 219-221 German. MR 1078353, 10.1007/BF02567920
Reference: [2] Davenport, H.: Multiplicative Number Theory.Springer-Verlag New York (1980). Zbl 0453.10002, MR 0606931
.

Files

Files Size Format View
CzechMathJ_60-2010-3_19.pdf 217.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo