Previous |  Up |  Next

Article

Title: Grothendieck ring of quantum double of finite groups (English)
Author: Dong, Jingcheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 869-879
Summary lang: English
.
Category: math
.
Summary: Let $kG$ be a group algebra, and $D(kG)$ its quantum double. We first prove that the structure of the Grothendieck ring of $D(kG)$ can be induced from the Grothendieck ring of centralizers of representatives of conjugate classes of $G$. As a special case, we then give an application to the group algebra $kD_n $, where $k$ is a field of characteristic $2$ and $D_n $ is a dihedral group of order $2n$. (English)
Keyword: Grothendieck ring
Keyword: quantum double
Keyword: Yetter-Drinfeld module
Keyword: dihedral group
MSC: 13D15
MSC: 16S34
MSC: 16T05
MSC: 19A22
idZBL: Zbl 1212.16057
idMR: MR2672420
.
Date available: 2010-07-20T17:23:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140609
.
Reference: [1] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge University Press, Cambridge (1995). MR 1314422
Reference: [2] Drinfeld, V. G.: Quantum Groups.Proc. Int. Cong. Math. Berkeley (1986). MR 0934283
Reference: [3] Kassel, C.: Quantum Groups.GTM 55. Springer-Verlag (1995). Zbl 0808.17003, MR 1321145
Reference: [4] Majid, S.: Doubles of quasitriangular Hopf algebras.Comm. Algebra 19 (1991), 3061-3073. Zbl 0767.16014, MR 1132774, 10.1080/00927879108824306
Reference: [5] Montgomery, S.: Hopf Algebras and Their Actions on Rings.CBMS, Lecture in Math, Providence, RI (1993). Zbl 0793.16029, MR 1243637
Reference: [6] Witherspoon, S. J.: The representation ring of the quantum double of a finite group.J. Algebra 179 (1996), 305-329. Zbl 0840.19001, MR 1367852, 10.1006/jabr.1996.0014
.

Files

Files Size Format View
CzechMathJ_60-2010-3_18.pdf 252.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo