Previous |  Up |  Next

Article

Keywords:
compact space; countably compact space; Lindelöf space; $\Cal K$-starcompact space; $\Cal C$-starcompact space; $\Cal L$-starcompact space
Summary:
A space $X$ is {\it $\Cal C$-starcompact} if for every open cover $\Cal U$ of $X,$ there exists a countably compact subset $C$ of $X$ such that $\mathop{\rm St}(C,{\Cal U})=X.$ In this paper we investigate the relations between $\Cal C$-starcompact spaces and other related spaces, and also study topological properties of $\Cal C$-starcompact spaces.
References:
[1] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. MR 1103993
[2] Engelking, R.: General Topology. Rev. and compl. ed., Heldermann Verlag, Berlin (1989). MR 1039321 | Zbl 0684.54001
[3] Hiremath, G. R.: On star with Lindelöf center property. J. Indian Math. Soc. New Ser. 59 (1993), 227-242. MR 1248966 | Zbl 0887.54021
[4] Fleischman, W. M.: A new extension of countable compactness. Fund. Math. 67 (1970), 1-9. MR 0264608 | Zbl 0194.54601
[5] Ikenaga, S., Tani, T.: On a topological concept between countable compactness and pseudocompactness. Research Reports of Numazu Technical College 26 (1990), 139-142.
[6] Ikenaga, S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces. Memories of Numazu College of Technology 18 (1983), 105-108.
[7] Matveev, M. V.: A survey on star-covering properties. Topological Atlas, preprint No. 330 (1998).
[8] Mrówka, S.: On completely regular spaces. Fund. Math. 41 (1954), 105-106. MR 0063650
[9] Song, Y-K.: On $\Cal K$-starcompact spaces. Bull. Malays. Math. Sci. Soc. 30 (2007), 59-64. MR 2330636 | Zbl 1134.54314
[10] Song, Y-K.: On $\Cal L$-starcompact spaces. Czech. Math. J. 56 (2006), 781-788. MR 2291775 | Zbl 1164.54356
Partner of
EuDML logo