Previous |  Up |  Next

Article

Title: On some problems connected with diagonal map in some spaces of analytic functions (English)
Author: Shamoyan, Romi
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 4
Year: 2008
Pages: 351-366
Summary lang: English
.
Category: math
.
Summary: For any holomorphic function $f$ on the unit polydisk $\mathbb D ^n$ we consider its restriction to the diagonal, i.e., the function in the unit disc $\mathbb D \subset \mathbb C $ defined by $\mathop{\rm Diag} f(z)=f(z,\ldots ,z)$, and prove that the diagonal map ${\rm Diag}$ maps the space $Q_{p,q,s}(\mathbb D ^n)$ of the polydisk onto the space $\widehat Q^q_{p,s,n}(\mathbb D )$ of the unit disk. (English)
Keyword: diagonal map
Keyword: holomorphic function
Keyword: Bergman space
Keyword: polydisk
MSC: 30H05
MSC: 47B35
idZBL: Zbl 1199.47126
idMR: MR2472484
DOI: 10.21136/MB.2008.140625
.
Date available: 2010-07-20T17:37:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140625
.
Reference: [1] Duren, P. L., Shields, A. L.: Restriction of $H^p$ functions on the diagonal of the polydiscs.Duke Math. J. 42 (1975), 751-753. MR 0402101, 10.1215/S0012-7094-75-04262-3
Reference: [2] Essen, M., Wulan, H., Xiao, J.: Several function theoretic characterizations of Möbius invariant $Q_k$ spaces.J. Funct. Anal. 230 (2006), 78-115. MR 2184185, 10.1016/j.jfa.2005.07.004
Reference: [3] Luecking, D.: A new proof of an inequality of Littlewood and Paley.Proc. Am. Math. Soc. 103 (1988), 887-893. Zbl 0665.30035, MR 0947675, 10.1090/S0002-9939-1988-0947675-0
Reference: [4] Lusin, N.: Sur une propriete des fonctions a carre sommable.Bulletin Calcutta M. S. 20 (1930), 139-154.
Reference: [5] Ortega, J., Fabrega, J.: Hardy's inequality and embeddings in holomorphic Lizorkin-Triebel spaces.Ill. J. Math. 43 (1993), 733-751. 10.1215/ijm/1256060689
Reference: [6] Ortega, J., Fabrega, J.: Pointwise multipliers and decomposition theorems for $F^{\infty, q}_s$.Math. Ann. 329 (2004), 247-277. MR 2060362, 10.1007/s00208-003-0461-6
Reference: [7] Piranian, G., Rudin, W.: Lusin's theorem on areas of conformal maps.Mich. Math. J. 3 (1956), 191-199. Zbl 0074.05602, MR 0083553
Reference: [8] Ren, G., Huai, S. J.: The diagonal mapping in mixed norm spaces.Stud. Math. 163 (2004), 103-117. MR 2047374, 10.4064/sm163-2-1
Reference: [9] Rudin, W.: Function Theory in Polydiscs.Benjamin, New York (1969). Zbl 0177.34101, MR 0255841
Reference: [10] Shamoyan, R. F.: Generalized Hardy transformation and Toeplitz operators in BMOA-type spaces.Ukr. Math. J. (2001), 53 1519-1534. Zbl 1010.32005, MR 1900044, 10.1023/A:1014322910001
Reference: [11] Shamoyan, F. A., Djrbashian, A. E.: Topics in the Theory of ${\cal A}^p_\alpha$ Spaces.Teubner Texte zur Math. Leipzig (1988).
Reference: [12] Shi, J. H.: Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $\mathbb C^n$.Trans. Am. Math. Soc. 328 (1991), 619-637. MR 1016807, 10.1090/S0002-9947-1991-1016807-5
Reference: [13] c, S. Stevi': On an area inequality and weighted integrals of analytic functions.Result. Math. 41 (2002), 386-393. MR 1915936, 10.1007/BF03322780
Reference: [14] c, S. Stevi': On harmonic Hardy and Bergman spaces.J. Math. Soc. Japan 54 (2002), 983-996. MR 1921096, 10.2969/jmsj/1191592001
Reference: [15] c, S. Stevi': Weighted integrals of holomorphic functions on the unit polydisk II.Z. Anal. Anwend. 23 (2004), 775-782. MR 2110405
Reference: [16] Yamashita, S.: Criteria for functions to be of Hardy class $H^p$.Proc. Am. Math. Soc. 75 (1979), 69-72. MR 0529215
Reference: [17] Zhu, K.: The Bergman spaces, the Bloch spaces, and Gleason's problem.Trans. Am. Math. Soc. 309 (1988), 253-268. MR 0931533
Reference: [18] Zhu, K.: Duality and Hankel operators on the Bergman spaces of bounded symmetric domains.J. Funct. Anal. 81 (1988), 260-278. Zbl 0669.47019, MR 0971880, 10.1016/0022-1236(88)90100-0
.

Files

Files Size Format View
MathBohem_133-2008-4_3.pdf 284.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo