Previous |  Up |  Next

Article

Title: Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces (English)
Author: Uma, M. K.
Author: Roja, E.
Author: Balasubramanian, G.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 4
Year: 2008
Pages: 341-349
Summary lang: English
.
Category: math
.
Summary: In this paper a new class of fuzzy topological spaces called pairwise ordered fuzzy extremally disconnected spaces is introduced. Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces has been discussed as in the paper of Kubiak (1987) besides proving several other propositions and lemmas. (English)
Keyword: pairwise ordered fuzzy extremally disconnected space
Keyword: ordered $T_1$-fuzzy continuous function
Keyword: lower (upper) $T_1$-fuzzy continuous functions
MSC: 03E72
MSC: 54A40
idZBL: Zbl 1199.54052
idMR: MR2472483
DOI: 10.21136/MB.2008.140624
.
Date available: 2010-07-20T17:36:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140624
.
Reference: [1] Balasubramanian, G.: Fuzzy disconnectedness and its stronger forms.Indian J. Pure Appl. Math. 24 (1993), 27-30. Zbl 0785.54005, MR 1203246
Reference: [2] Balasubramanian, G.: On fuzzy $\beta$-compact spaces and fuzzy $\beta$-extremally disconnected spaces.Kybernetika 33 (1997), 271-277. Zbl 0932.54008, MR 1463609
Reference: [3] Balasubramanian, G., Sundaram, P.: On some generalizations of fuzzy continuous functions.Fuzzy Sets Syst. 86 (1997), 93-100. Zbl 0921.54005, MR 1438441
Reference: [4] Balasubramanian, G.: Maximal fuzzy topologies.Kybernetika 31 (1995), 459-464. Zbl 0856.54004, MR 1361307
Reference: [5] Chang, C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [6] Kandil, A.: Biproximities and fuzzy bitopological spaces.Simen Stevin 63 (1989), 45-66. Zbl 0681.54015, MR 1021455
Reference: [7] Katsaras, A. K.: Ordered fuzzy topological spaces.J. Math. Anal. Appl. 84 (1981), 44-58. Zbl 0512.54005, MR 0639523, 10.1016/0022-247X(81)90150-5
Reference: [8] Smets, P.: The degree of belief in a fuzzy event.Information Sciences 25 (1981), 1-19. Zbl 0472.62005, MR 0651984, 10.1016/0020-0255(81)90008-6
Reference: [9] Sugeno, M.: An introductory survey of fuzzy control.Information Sciences 36 (1985), 59-83. Zbl 0586.93053, MR 0813765, 10.1016/0020-0255(85)90026-X
Reference: [10] Kubiak, T.: $L$-fuzzy normal spaces and Tietze extension theorem.J. Math. Anal. Appl. 25 (1987), 141-153. Zbl 0643.54008, MR 0891354, 10.1016/0022-247X(87)90169-7
Reference: [11] Zadeh, L. A.: Fuzzy sets.Inf. Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
MathBohem_133-2008-4_2.pdf 234.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo