Previous |  Up |  Next

Article

Title: On monotonic solutions of an integral equation of Abel type (English)
Author: Darwish, Mohamed Abdalla
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 4
Year: 2008
Pages: 407-420
Summary lang: English
.
Category: math
.
Summary: We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in $C[0,1]$. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (English)
Keyword: quadratic integral equation
Keyword: monotonic solutions
Keyword: Abel
Keyword: measure of noncompactness
Keyword: Darbo's fixed point theorem
MSC: 45G05
MSC: 45G10
MSC: 45M99
MSC: 47H09
idZBL: Zbl 1199.45014
idMR: MR2472488
DOI: 10.21136/MB.2008.140629
.
Date available: 2010-07-20T17:40:24Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140629
.
Reference: [1] Appell, J., Zabrejko, P. P.: Nonlinear Superposition Operators.Cambridge Tracts in Mathematics, vol. 95, Cambridge University Press (1990). Zbl 0701.47041, MR 1066204
Reference: [2] Argyros, I. K.: Quadratic equations and applications to Chandrasekhar's and related equations.Bull. Aust. Math. Soc. 32 (1985), 275-292. Zbl 0607.47063, MR 0815369, 10.1017/S0004972700009953
Reference: [3] Dugundji, J., Granas, A.: Fixed Point Theory.Monografie Matematyczne, PWN, Warsaw (1982). Zbl 0483.47038, MR 0660439
Reference: [4] Banaś, J., Rzepka, B.: Monotonic solutions of a quadratic integral equation of fractional order.J. Math. Anal. Appl. 332 (2007), 1370-1378. Zbl 1123.45001, MR 2324344, 10.1016/j.jmaa.2006.11.008
Reference: [5] Banaś, J., Caballero, J., Rocha, J., Sadarangani, K.: Monotonic solutions of a class of quadratic integral equations of Volterra type.Comput. Math. Appl. 49 (2005), 943-952. Zbl 1083.45002, MR 2135225, 10.1016/j.camwa.2003.11.001
Reference: [6] Banaś, J., Martinon, A.: Monotonic solutions of a quadratic integral equation of Volterra type.Comput. Math. Appl. 47 (2004), 271-279. Zbl 1059.45002, MR 2047943, 10.1016/S0898-1221(04)90024-7
Reference: [7] Banaś, J., Olszowy, L.: Measures of noncompactness related to monotonicity.Comment. Math. 41 (2001), 13-23. Zbl 0999.47041, MR 1876707
Reference: [8] Banaś, J., Lecko, M., El-Sayed, W. G.: Existence theorems of some quadratic integral equations.J. Math. Anal. Appl. 222 (1998), 276-285. MR 1623923, 10.1006/jmaa.1998.5941
Reference: [9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York (1980). MR 0591679
Reference: [10] Caballero, J., López, B., Sadarangani, K.: On monotonic solutions of an integral equation of Volterra type with supremum.J. Math. Anal. Appl. 305 (2005), 304-315. Zbl 1076.45002, MR 2128130, 10.1016/j.jmaa.2004.11.054
Reference: [11] Caballero, J., Rocha, J., Sadarangani, K.: On monotonic solutions of an integral equation of Volterra type.J. Comput. Appl. Math. 174 (2005), 119-133. Zbl 1063.45003, MR 2102652, 10.1016/j.cam.2004.04.003
Reference: [12] Chandrasekhar, S.: Radiative Transfer.Oxford University Press, London (1950). Zbl 0037.43201, MR 0042603
Reference: [13] Darwish, M. A.: On monotonic solutions of a singular quadratic integral equation with supremum.(to appear) in Dynam. Syst. Appl. MR 2569518
Reference: [14] Darwish, M. A.: On solvability of some quadratic functional-integral equation in Banach algebra.Commun. Appl. Anal. 11 (2007), 441-450. Zbl 1137.45004, MR 2368195
Reference: [15] Darwish, M. A.: On global attractivity of solutions of a functional-integral equation.Electron. J. Qual. Theory Differ. Equ. 21 (2007), 1-10. Zbl 1178.45005, MR 2346354, 10.14232/ejqtde.2007.1.21
Reference: [16] Darwish, M. A.: On quadratic integral equation of fractional orders.J. Math. Anal. Appl. 311 (2005), 112-119. Zbl 1080.45004, MR 2165466, 10.1016/j.jmaa.2005.02.012
Reference: [17] El-Sayed, W. G., Rzepka, B.: Nondecreasing solutions of a quadratic integral equation of Urysohn type.Comput. Math. Appl. 51 (2006), 1065-1074. Zbl 1134.45004, MR 2228900, 10.1016/j.camwa.2005.08.033
Reference: [18] Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications.Lect. Notes Math., vol. 1461 (1991). Zbl 0717.45002, MR 1095269
Reference: [19] Hu, S., Khavani, M., Zhuang, W.: Integral equations arising in the kinetic theory of gases.Appl. Analysis 34 (1989), 261-266. MR 1387174, 10.1080/00036818908839899
Reference: [20] Leggett, R. W.: A new approach to the H-equation of Chandrasekhar.SIAM J. Math. 7 (1976), 542-550. Zbl 0331.45012, MR 0417708, 10.1137/0507044
Reference: [21] Stuart, C. A.: Existence theorems for a class of nonlinear integral equations.Math. Z. 137 (1974), 49-66. MR 0348416, 10.1007/BF01213934
.

Files

Files Size Format View
MathBohem_133-2008-4_7.pdf 257.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo