Previous |  Up |  Next

Article

Title: On Hermite-Hermite matrix polynomials (English)
Author: Metwally, M. S.
Author: Mohamed, M. T.
Author: Shehata, A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 4
Year: 2008
Pages: 421-434
Summary lang: English
.
Category: math
.
Summary: In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite matrix polynomials is proposed. (English)
Keyword: matrix functions
Keyword: Hermite matrix polynomials
Keyword: recurrence relation
Keyword: Hermite matrix differential equation
Keyword: Rodrigues's formula
MSC: 15A16
MSC: 15A54
MSC: 15A60
MSC: 33C05
MSC: 33C45
idZBL: Zbl 1199.15079
idMR: MR2472489
DOI: 10.21136/MB.2008.140630
.
Date available: 2010-07-20T17:41:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140630
.
Reference: [1] Batahan, R. S.: A new extension of Hermite matrix polynomials and its applications.Linear Algebra Appl. 419 (2006), 82-92. Zbl 1106.15016, MR 2263112
Reference: [2] Defez, E., Jódar, L.: Some applications of Hermite matrix polynomials series expansions.J. Comput. Appl. Math. 99 (1998), 105-117. MR 1662687, 10.1016/S0377-0427(98)00149-6
Reference: [3] Defez, E., Hervás, A., Jódar, L., Law, A.: Bounding Hermite matrix polynomials.Math. Computer Modelling 40 (2004), 117-125. Zbl 1061.33007, MR 2091530, 10.1016/j.mcm.2003.11.004
Reference: [4] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations.J. Approx. Theory Appl. 12 (1996), 20-30. MR 1465570
Reference: [5] Jódar, L., Defez, E.: Some new matrix formulas related to Hermite matrix polynomials theory.Proceedings International Workshop on Orthogonal Polynomials in Mathematical Physics, Leganés, 1996 M. Alfaro Universidad Carlos III. de Madrid, Servicio de Publicaciones, 1997 93-101. MR 1466771
Reference: [6] Jódar, L., Defez, E.: A connection between Laguerre's and Hermite's matrix polynomials.Appl. Math. Lett. 11 (1998), 13-17. Zbl 1074.33011, MR 1490373, 10.1016/S0893-9659(97)00125-0
Reference: [7] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix functions.J. Approx. Theory Appl. 14 (1998), 36-48. MR 1651470
Reference: [8] Lebedev, N. N.: Special Functions and Their Applications.Dover, New York (1972). Zbl 0271.33001, MR 0350075
Reference: [9] Rainville, E. D.: Special Functions.Macmillan, New York (1962). MR 0107725
Reference: [10] Sayyed, K. A. M., Metwally, M. S., Batahan, R. S.: On generalized Hermite matrix polynomials.Electron. J. Linear Algebra 10 (2003), 272-279. Zbl 1038.33005, MR 2025009
Reference: [11] Sayyed, K. A. M., Metwally, M. S., Batahan, R. S.: Gegenbauer matrix polynomials and second order matrix differential equations.Divulg. Mat. 12 (2004), 101-115. Zbl 1102.33010, MR 2123993
Reference: [12] Srivastava, H. M., Manocha, H. L.: A Treatise on Generating Functions.Ellis Horwood, New York (1984). Zbl 0535.33001, MR 0750112
.

Files

Files Size Format View
MathBohem_133-2008-4_8.pdf 248.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo