Previous |  Up |  Next

Article

Title: A characterization of $C^{1,1}$ functions via lower directional derivatives (English)
Author: Bednařík, Dušan
Author: Pastor, Karel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 217-221
Summary lang: English
.
Category: math
.
Summary: The notion of $\tilde {\ell }$-stability is defined using the lower Dini directional derivatives and was introduced by the authors in their previous papers. In this paper we prove that the class of $\tilde {\ell }$-stable functions coincides with the class of C$^{1,1}$ functions. This also solves the question posed by the authors in SIAM J. Control Optim. 45 (1) (2006), pp.\ 383--387. (English)
Keyword: second-order derivative
Keyword: $C^{1,1}$ function
Keyword: $\ell $-stable function
Keyword: $\tilde {\ell }$-stability
MSC: 26B05
MSC: 49K10
idZBL: Zbl 1212.49043
idMR: MR2535149
DOI: 10.21136/MB.2009.140656
.
Date available: 2010-07-20T17:59:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140656
.
Reference: [1] Bednařík, D., Pastor, K.: Second-order sufficient condition for $\tilde{\ell}$-stable functions.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 46 (2007), 7-18. MR 2387488
Reference: [2] Bednařík, D., Pastor, K.: Errata: Elimination of strict convergence in optimization.SIAM J. Control Optim. 45 (2006), 383-387. MR 2225311, 10.1137/050636309
Reference: [3] Bruckner, A. M.: Differentiation of Real Functions, 2nd ed.Amer. Math. Soc., Providence, Rhode Island (1994). MR 1274044
Reference: [4] Cannarsa, P., Sinestrari, C.: Semiconave Functions, Hamilton-Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations 58, Birkäuser, Boston, MA (2004). MR 2041617
Reference: [5] Ginchev, I., Guerraggio, A., Rocca, M.: From scalar to vector optimization.Appl. Math. 51 (2006), 5-36. Zbl 1164.90399, MR 2197320, 10.1007/s10492-006-0002-1
Reference: [6] Thompson, B. S.: Real Analysis.Springer, Berlin (1985).
.

Files

Files Size Format View
MathBohem_134-2009-2_10.pdf 212.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo