Previous |  Up |  Next

Article

Title: Asymptotic properties of solutions of higher order difference equations (English)
Author: Migda, Janusz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 1
Year: 2010
Pages: 29-39
Summary lang: English
.
Category: math
.
Summary: Asymptotic properties of solutions of the difference equation of the form \[ \Delta ^m x_n=a_n\varphi (x_{\tau _1(n)},\dots ,x_{\tau _k(n)})+b_n \] are studied. Conditions under which every (every bounded) solution of the equation $\Delta ^my_n=b_n$ is asymptotically equivalent to some solution of the above equation are obtained.\\ (English)
Keyword: difference equation
Keyword: asymptotic behavior
MSC: 39A10
idZBL: Zbl 1224.39021
idMR: MR2643353
DOI: 10.21136/MB.2010.140680
.
Date available: 2010-07-20T18:20:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140680
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications.Marcel Dekker, New York (2000). Zbl 0952.39001, MR 1740241
Reference: [2] Cull, P., Flahive, M., Robson, R.: Difference Equations. From Rabbits to Chaos.Springer, New York (2005). Zbl 1085.39002, MR 2131908
Reference: [3] Drozdowicz, A., Migda, J.: On asymptotic behavior of solutions of some difference equation.Math. Slovaca 52 (2002), 207-214. MR 1935118
Reference: [4] Drozdowicz, A., Popenda, J.: Asymptotic behavior of the solutions of an $n$-th order difference equations.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 29 (1990), 161-168. MR 1059121
Reference: [5] Elaydi, S. N.: An Introduction to Difference Equations.Springer, New York (1996). Zbl 0840.39002, MR 1410259
Reference: [6] Gleska, A., Werbowski, J.: Comparison theorems for the asymptotic behavior of solutions of nonlinear difference equations.J. Math. Anal. Appl. 226 (1998), 456-465. Zbl 0929.39002, MR 1650201, 10.1006/jmaa.1998.6094
Reference: [7] Kelley, W. G., Peterson, A. C.: Difference Equations: an Introduction with Applications.Academic Press, Boston (1991). Zbl 0733.39001, MR 1142573
Reference: [8] Kocic, V. L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Kluwer Acad. Dordrecht (1993). Zbl 0787.39001, MR 1247956
Reference: [9] Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations, Numerical Methods and Applications.Academic Press, New York (1988). Zbl 0683.39001, MR 0939611
Reference: [10] Migda, J.: Asymptotic behavior of solutions of nonlinear difference equations.Math. Bohem. 129 (2004), 349-359. Zbl 1080.39501, MR 2102609
Reference: [11] Migda, M., Migda, J.: On the asymptotic behavior of solutions of higher order nonlinear difference equations.Nonlinear Anal. 47 (2001), 4687-4695. Zbl 1042.39509, MR 1975862, 10.1016/S0362-546X(01)00581-8
Reference: [12] Migda, M., Migda, J.: Asymptotic properties of solutions of second-order neutral difference equations.Nonlinear Anal. 63 (2005), 789-799. Zbl 1160.39306, MR 2280277, 10.1016/j.na.2005.02.005
Reference: [13] Wang, Z., Sun, J.: Asymptotic behavior of solutions of nonlinear higher-order neutral type difference equations.J. Difference Equ. Appl. 12 (2006), 419-432. Zbl 1098.39006, MR 2241385
Reference: [14] Zafer, A.: Oscillatory and asymptotic behavior of higher order difference equations.Math. Comput. Modelling 21 (1995), 43-50. Zbl 0820.39001, MR 1317929, 10.1016/0895-7177(95)00005-M
Reference: [15] Zafer, A.: Necessary and sufficient condition for oscillation of higher order delay difference equations.Comput. Math. Appl. 35 (1998), 125-130. MR 1617906, 10.1016/S0898-1221(98)00078-9
Reference: [16] Zhang, B., Sun, Y.: Classification of nonoscillatory solutions of a higher order neutral difference equation.J. Difference Equ. Appl. 8 (2002), 937-955. Zbl 1014.39009, MR 1942433, 10.1080/1023619021000048841
Reference: [17] Zhou, Y., Huang, Y. Q.: Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations.J. Math. Anal. Appl. 280 (2003), 63-76. Zbl 1036.39018, MR 1972192, 10.1016/S0022-247X(03)00017-9
.

Files

Files Size Format View
MathBohem_135-2010-1_3.pdf 246.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo