Previous |  Up |  Next

Article

Title: Classes of fuzzy filters of residuated lattice ordered monoids (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 1
Year: 2010
Pages: 81-97
Summary lang: English
.
Category: math
.
Summary: The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (\rl monoids) are common generalizations of $\text{\rm BL}$-algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding algebras. In the paper we investigate implicative, positive implicative, Boolean and fantastic fuzzy filters of bounded $\text{\rm Rl}$-monoids. (English)
Keyword: residuated $\text{\rm l}$-monoid
Keyword: non-classical logics
Keyword: basic fuzzy logic
Keyword: intuitionistic logic
Keyword: filter
Keyword: fuzzy filter
Keyword: $\text{\rm BL}$-algebra
Keyword: $\text{\rm MV}$-algebra
Keyword: Heyting algebra
MSC: 03B47
MSC: 03B52
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1224.03043
idMR: MR2643358
DOI: 10.21136/MB.2010.140685
.
Date available: 2010-07-20T18:25:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140685
.
Reference: [1] Balbes, R., Dwinger, P.: Distributive Lattices.Univ. of Missouri Press, Columbia, Missouri (1974). Zbl 0321.06012, MR 0373985
Reference: [2] Blount, K., Tsinakis, C.: The structure of residuated lattices.Intern. J. Alg. Comp. 13 (2003), 437-461. Zbl 1048.06010, MR 2022118, 10.1142/S0218196703001511
Reference: [3] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer, Dordrecht (2000). Zbl 0937.06009
Reference: [4] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated l-monoids.Discrete Mathematics 306 (2006), 1317-1326. MR 2237716, 10.1016/j.disc.2005.12.024
Reference: [5] Dymek, G.: Fuzzy prime ideals of pseudo-MV algebras.Soft Comput. 12 (2008), 365-372. Zbl 1132.06006, MR 2437768, 10.1007/s00500-007-0170-2
Reference: [6] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics.Elsevier Studies in Logic and Foundations (2007). Zbl 1171.03001, MR 2531579
Reference: [7] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht (1998). MR 1900263
Reference: [8] Hájek, P.: Basic fuzzy logic and BL-algebras.Soft Comput. 2 (1998), 124-128. 10.1007/s005000050043
Reference: [9] Haveshki, M., Saeid, A. B., Eslami, E.: Some types of filters in BL-algebras.Soft Comput. 10 (2006), 657-664. Zbl 1103.03062, MR 2402626, 10.1007/s00500-005-0534-4
Reference: [10] Höhle, U.: Commutative, residuated l-monoids.Non-Classical Logics and Their Applications to Fuzzy Subsets, Kluwer, Dordrecht U. Höhle, E. P. Klement (1995), 53-106. MR 1345641
Reference: [11] Hoo, C. S.: Fuzzy ideals of BCI and MV-algebras.Fuzzy Sets and Syst. 62 (1994), 111-114. Zbl 0826.06011, MR 1259890
Reference: [12] Hoo, C. S.: Fuzzy implicative and Boolean ideals of MV-algebras.Fuzzy Sets and Syst. 66 (1994), 315-327. Zbl 0844.06007, MR 1300288
Reference: [13] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.J. Martinez Ordered algebraic structures. Kluwer, Dordrecht (2002), 19-56. Zbl 1070.06005, MR 2083033
Reference: [14] Jun, Y. B., Walendziak, A.: Fuzzy ideals of pseudo MV-algebras.Inter. Rev. Fuzzy Math. 1 (2006), 21-31. Zbl 1128.06005, MR 2294714
Reference: [15] Kondo, M., Dudek, W. A.: Filter theory of BL-algebras.Soft Comput. 12 (2008), 419-423. Zbl 1165.03056, 10.1007/s00500-007-0178-7
Reference: [16] Kondo, M., Dudek, W. A.: On transfer principle in fuzzy theory.Mathware and Soft Comput. 13 (2005), 41-55. MR 2160344
Reference: [17] Rachůnek, J.: A duality between algebras of basic logic and bounded representable DRl-monoids.Math. Bohem. 126 (2001), 561-569. MR 1970259
Reference: [18] Rachůnek, J., Šalounová, D.: Boolean deductive systems of bounded commutative residuated l-monoids.Contrib. Gen. Algebra 16 (2005), 199-208. MR 2166959
Reference: [19] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated l-monoids.Czech. Math. J. 57 (2007), 395-406. MR 2309973, 10.1007/s10587-007-0068-2
Reference: [20] Rachůnek, J., Šalounová, D.: Classes of filters in generalizations of commutative fuzzy structures.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math (to appear). MR 2641951
Reference: [21] Rachůnek, J., Šalounová, D.: Fuzzy filters and fuzzy prime filters of bounded Rl-monoids and pseudo BL-algebras.Inform. Sci. 178 (2008), 3474-3481. MR 2436416, 10.1016/j.ins.2008.05.005
Reference: [22] Rachůnek, J., Slezák, V.: Negation in bounded commutative DRl-monoids.Czech. Math. J. 56 (2006), 755-763. MR 2291772, 10.1007/s10587-006-0053-1
Reference: [23] Turunen, E.: Boolean deductive systems of BL-algebras.Arch. Math. Logic 40 (2001), 467-473. Zbl 1030.03048, MR 1854896, 10.1007/s001530100088
Reference: [24] Ward, M., Dilworth, R. P.: Residuated lattices.Trans. Amer. Math. Soc. 45 (1939), 335-354 \JFM 65.0084.01. Zbl 0021.10801, MR 1501995, 10.1090/S0002-9947-1939-1501995-3
Reference: [25] Zhan, J., Dudek, W. A., Jun, Y. B.: Interval valued ($\in,{\in}ěe q$)-fuzzy filters of pseudo BL-algebras.Soft Comput. 13 (2009), 13-21. MR 2603340, 10.1007/s00500-008-0288-x
.

Files

Files Size Format View
MathBohem_135-2010-1_8.pdf 270.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo