Previous |  Up |  Next

Article

Title: Positive fixed point theorems arising from seeking steady states of neural networks (English)
Author: Wang, Gen-Qiang
Author: Cheng, Sui Sun
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 1
Year: 2010
Pages: 99-112
Summary lang: English
.
Category: math
.
Summary: Biological systems are able to switch their neural systems into inhibitory states and it is therefore important to build mathematical models that can explain such phenomena. If we interpret such inhibitory modes as `positive' or `negative' steady states of neural networks, then we will need to find the corresponding fixed points. This paper shows positive fixed point theorems for a particular class of cellular neural networks whose neuron units are placed at the vertices of a regular polygon. The derivation is based on elementary analysis. However, it is hoped that our easy fixed point theorems have potential applications in exploring stationary states of similar biological network models. (English)
Keyword: positive fixed point
Keyword: neural network
Keyword: periodic solution
Keyword: difference equation
Keyword: discrete boundary condition
Keyword: critical point theory
MSC: 92B20
idZBL: Zbl 1222.92012
idMR: MR2643359
DOI: 10.21136/MB.2010.140686
.
Date available: 2010-07-20T18:26:39Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140686
.
Reference: [1] Wang, G. Q., Cheng, S. S.: Fixed point theorems arising from seeking steady states of neural networks.Appl. Math. Modelling 33 (2009), 499-506. Zbl 1167.39304, MR 2458519, 10.1016/j.apm.2007.11.013
Reference: [2] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Springer, New York (1989). Zbl 0676.58017, MR 0982267
Reference: [3] Roberts, J. S.: Artificial Neural Networks.McGraw-Hill, Singapore (1997).
Reference: [4] Haykin, S.: Neural Networks: a Comprehensive Foundation.Englewood Cliffs, Macmillan Company, NJ (1994). Zbl 0828.68103
Reference: [5] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations.CBMS, AMS, number 65 (1986). Zbl 0609.58002, MR 0845785
Reference: [6] Zhou, Z., Yu, J. S., Guo, Z. M.: Periodic solutions of higher-dimensional discrete systems.Proc. Royal Soc. Edinburgh 134A (2004), 1013-1022. Zbl 1073.39010, MR 2099576
Reference: [7] Wang, G. Q., Cheng, S. S.: Notes on periodic solutions of discrete steady state systems.Portugaliae Math. 64 (2007), 3-10. Zbl 1141.39011, MR 2298108, 10.4171/PM/1772
Reference: [8] Guo, Z. M., Yu, J. S.: Existence of periodic and subharmonic solutions for second-order superlinear difference equations.Science in China (Series A) 46 (2003), 506-515. Zbl 1215.39001, MR 2014482, 10.1007/BF02884022
Reference: [9] Guo, Z. M., Yu, J. S.: The existence of periodic and subharmonic solutions to subquadratic second-order difference equations.J. London Math. Soc. 68 (2003), 419-430. MR 1994691, 10.1112/S0024610703004563
Reference: [10] Zhou, Z.: Periodic orbits on discrete dynamical systems.Comput. Math. Appl. 45 (2003), 1155-1161. Zbl 1052.39016, MR 2000585, 10.1016/S0898-1221(03)00075-0
Reference: [11] Wang, G. Q., Cheng, S. S.: Positive periodic solutions for nonlinear difference equations via a continuation theorem.Advance in Difference Equations 4 (2004), 311-320. Zbl 1095.39011, MR 2129756
Reference: [12] Cheng, S. S., Lin, S. S.: Existence and uniqueness theorems for nonlinear difference boundary value problems.Utilitas Math. 39 (1991), 167-186. Zbl 0729.39002, MR 1119771
Reference: [13] Cheng, S. S., Yen, H. T.: On a nonlinear discrete boundary value problem.Linear Alg. Appl. 312 (2000), 193-201. MR 1770367, 10.1016/S0024-3795(00)00133-6
Reference: [14] Cheng, S. S.: Partial Difference Equations.Taylor and Francis (2003). Zbl 1016.39001, MR 2193620
.

Files

Files Size Format View
MathBohem_135-2010-1_9.pdf 256.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo