Previous |  Up |  Next

Article

Title: A third order boundary value problem subject to nonlinear boundary conditions (English)
Author: Infante, Gennaro
Author: Pietramala, Paolamaria
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 2
Year: 2010
Pages: 113-121
Summary lang: English
.
Category: math
.
Summary: Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear. (English)
Keyword: positive solution
Keyword: nonlinear boundary conditions
Keyword: third order problem
Keyword: cone
Keyword: fixed point index
MSC: 34B10
MSC: 34B18
MSC: 47H10
MSC: 47H30
idZBL: Zbl 1224.34036
idMR: MR2723078
DOI: 10.21136/MB.2010.140687
.
Date available: 2010-07-20T18:28:45Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140687
.
Reference: [1] Anderson, D. R., Davis, J. M.: Multiple solutions and eigenvalues for third-order right focal boundary value problems.J. Math. Anal. Appl. 267 (2002), 135-157. Zbl 1003.34021, MR 1886821, 10.1006/jmaa.2001.7756
Reference: [2] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces.SIAM Rev. 18 (1976), 620-709. Zbl 0345.47044, MR 0415432, 10.1137/1018114
Reference: [3] Cabada, A., Minhós, F., Santos, A. I.: Solvability for a third order fully discontinuous equation with nonlinear functional boundary conditions.J. Math. Anal. Appl. 322 (2006), 735-748. MR 2250612, 10.1016/j.jmaa.2005.09.065
Reference: [4] Clark, S., Henderson, J.: Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations.Proc. Amer. Math. Soc. 134 (2006), 3363-3372. Zbl 1120.34010, MR 2231921, 10.1090/S0002-9939-06-08368-7
Reference: [5] Franco, D., O'Regan, D.: Existence of solutions to second order problems with nonlinear boundary conditions.Discrete Contin. Dyn. Syst. suppl. (2005), 273-280. MR 2018125
Reference: [6] Graef, J. R., Webb, J. R. L.: Third order boundary value problems with nonlocal boundary conditions.Nonlinear Anal. 71 (2009), 1542-1551. Zbl 1189.34034, MR 2524369
Reference: [7] Graef, J. R., Yang, B.: Positive solutions of a third order nonlocal boundary value problem.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. Zbl 1153.34014, MR 2375585
Reference: [8] Graef, J. R., Henderson, J., Yang, B.: Existence and nonexistence of positive solutions of an $n$-th order nonlocal boundary value problem.Proc. Dynam. Systems Appl. 5 (2008), 186-191. Zbl 1203.34026, MR 2468138
Reference: [9] Guidotti, P., Merino, S.: Gradual loss of positivity and hidden invariant cones in a scalar heat equation.Differ. Int. Equations 13 (2000), 1551-1568. Zbl 0983.35013, MR 1787081
Reference: [10] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones.Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [11] Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 99-106. MR 2375586, 10.3934/dcdss.2008.1.99
Reference: [12] Infante, G.: Positive solutions of differential equations with nonlinear boundary conditions.Discrete Contin. Dyn. Syst. suppl. (2003), 432-438. Zbl 1064.34014, MR 2018144
Reference: [13] Infante, G.: Nonzero solutions of second order problems subject to nonlinear BCs.Dynamic systems and applications. Vol. 5, 222-226, Dynamic, Atlanta, GA (2008). Zbl 1203.34030, MR 2468144
Reference: [14] Infante, G.: Nonlocal boundary value problems with two nonlinear boundary conditions.Commun. Appl. Anal. 12 (2008), 279-288. Zbl 1198.34025, MR 2499284
Reference: [15] Infante, G., Pietramala, P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations.Nonlinear Anal. 71 (2009), 1301-1310. Zbl 1169.45001, MR 2527550, 10.1016/j.na.2008.11.095
Reference: [16] Infante, G., Pietramala, P.: A cantilever equation with nonlinear boundary conditions.Electron. J. Qual. Theory Differ. Equ., Special Edition I (2009), 14 pp. Zbl 1201.34041, MR 2558840
Reference: [17] Infante, G., Webb, J. R. L.: Loss of positivity in a nonlinear scalar heat equation.NoDEA, Nonlinear Differential Equations Appl. 13 (2006), 249-261. Zbl 1112.34017, MR 2243714, 10.1007/s00030-005-0039-y
Reference: [18] Infante, G., Webb, J. R. L.: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations.Proc. Edinb. Math. Soc. 49 (2006), 637-656. MR 2266153, 10.1017/S0013091505000532
Reference: [19] Kong, L., Wang, J.: Multiple positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Anal. 42 (2000), 1327-1333. Zbl 0961.34012, MR 1784078, 10.1016/S0362-546X(99)00143-1
Reference: [20] Krasnosel'skiǐ, M. A., Zabreǐko, P. P.: Geometrical Methods of Nonlinear Analysis.Springer, Berlin (1984). MR 0736839
Reference: [21] Lan, K. Q.: Multiple positive solutions of semilinear differential equations with singularities.J. London Math. Soc. 63 (2001), 690-704. Zbl 1032.34019, MR 1825983, 10.1112/S002461070100206X
Reference: [22] Minhós, F. M.: On some third order nonlinear boundary value problems: existence, location and multiplicity results.J. Math. Anal. Appl. 339 (2008), 1342-1353. Zbl 1144.34009, MR 2377091, 10.1016/j.jmaa.2007.08.005
Reference: [23] Palamides, P. K., Infante, G., Pietramala, P.: Nontrivial solutions of a nonlinear heat flow problem via Sperner's Lemma.Appl. Math. Lett. 22 (2009), 1444-1450. Zbl 1173.34311, MR 2536830, 10.1016/j.aml.2009.03.014
Reference: [24] Palamides, P. K., Palamides, A. P.: A third-order 3-point BVP. Applying Krasnosel'skiǐ's theorem on the plane without a Green's function.Electron. J. Qual. Theory Differ. Equ. (2008), 15 pp. MR 2395531
Reference: [25] Palamides, A. P., Smyrlis, G.: Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function.Nonlinear Anal. 68 (2008), 2104-2118. Zbl 1153.34016, MR 2388769
Reference: [26] Wang, Y., Ge, W.: Existence of solutions for a third order differential equation with integral boundary conditions.Comput. Math. Appl. 53 (2007), 144-154. Zbl 1134.34009, MR 2321687, 10.1016/j.camwa.2007.01.002
Reference: [27] Webb, J. R. L.: Multiple positive solutions of some nonlinear heat flow problems.Discrete Contin. Dyn. Syst. suppl. (2005), 895-903. Zbl 1161.34007, MR 2192752
Reference: [28] Webb, J. R. L.: Optimal constants in a nonlocal boundary value problem.Nonlinear Anal. 63 (2005), 672-685. Zbl 1153.34320, MR 2188140, 10.1016/j.na.2005.02.055
Reference: [29] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach.J. London Math. Soc. 74 (2006), 673-693. Zbl 1115.34028, MR 2286439, 10.1112/S0024610706023179
Reference: [30] Webb, J. R. L., Lan, K. Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type.Topol. Methods Nonlinear Anal. 27 (2006), 91-116. Zbl 1146.34020, MR 2236412
Reference: [31] Yang, B.: Positive solutions of a third-order three-point boundary-value problem.Electron. J. Differ. Equations (2008), 10 pp. Zbl 1172.34317, MR 2430896
Reference: [32] Yang, Z.: Positive solutions of a second-order integral boundary value problem.J. Math. Anal. Appl. 321 (2006), 751-765. Zbl 1106.34014, MR 2241153, 10.1016/j.jmaa.2005.09.002
Reference: [33] Yao, Q.: Positive solutions of singular third-order three-point boundary value problems.J. Math. Anal. Appl. 354 (2009), 207-212. Zbl 1169.34314, MR 2510431, 10.1016/j.jmaa.2008.12.057
.

Files

Files Size Format View
MathBohem_135-2010-2_1.pdf 232.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo