Title:
|
A third order boundary value problem subject to nonlinear boundary conditions (English) |
Author:
|
Infante, Gennaro |
Author:
|
Pietramala, Paolamaria |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
135 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
113-121 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear. (English) |
Keyword:
|
positive solution |
Keyword:
|
nonlinear boundary conditions |
Keyword:
|
third order problem |
Keyword:
|
cone |
Keyword:
|
fixed point index |
MSC:
|
34B10 |
MSC:
|
34B18 |
MSC:
|
47H10 |
MSC:
|
47H30 |
idZBL:
|
Zbl 1224.34036 |
idMR:
|
MR2723078 |
DOI:
|
10.21136/MB.2010.140687 |
. |
Date available:
|
2010-07-20T18:28:45Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140687 |
. |
Reference:
|
[1] Anderson, D. R., Davis, J. M.: Multiple solutions and eigenvalues for third-order right focal boundary value problems.J. Math. Anal. Appl. 267 (2002), 135-157. Zbl 1003.34021, MR 1886821, 10.1006/jmaa.2001.7756 |
Reference:
|
[2] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces.SIAM Rev. 18 (1976), 620-709. Zbl 0345.47044, MR 0415432, 10.1137/1018114 |
Reference:
|
[3] Cabada, A., Minhós, F., Santos, A. I.: Solvability for a third order fully discontinuous equation with nonlinear functional boundary conditions.J. Math. Anal. Appl. 322 (2006), 735-748. MR 2250612, 10.1016/j.jmaa.2005.09.065 |
Reference:
|
[4] Clark, S., Henderson, J.: Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations.Proc. Amer. Math. Soc. 134 (2006), 3363-3372. Zbl 1120.34010, MR 2231921, 10.1090/S0002-9939-06-08368-7 |
Reference:
|
[5] Franco, D., O'Regan, D.: Existence of solutions to second order problems with nonlinear boundary conditions.Discrete Contin. Dyn. Syst. suppl. (2005), 273-280. MR 2018125 |
Reference:
|
[6] Graef, J. R., Webb, J. R. L.: Third order boundary value problems with nonlocal boundary conditions.Nonlinear Anal. 71 (2009), 1542-1551. Zbl 1189.34034, MR 2524369 |
Reference:
|
[7] Graef, J. R., Yang, B.: Positive solutions of a third order nonlocal boundary value problem.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. Zbl 1153.34014, MR 2375585 |
Reference:
|
[8] Graef, J. R., Henderson, J., Yang, B.: Existence and nonexistence of positive solutions of an $n$-th order nonlocal boundary value problem.Proc. Dynam. Systems Appl. 5 (2008), 186-191. Zbl 1203.34026, MR 2468138 |
Reference:
|
[9] Guidotti, P., Merino, S.: Gradual loss of positivity and hidden invariant cones in a scalar heat equation.Differ. Int. Equations 13 (2000), 1551-1568. Zbl 0983.35013, MR 1787081 |
Reference:
|
[10] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones.Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889 |
Reference:
|
[11] Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 99-106. MR 2375586, 10.3934/dcdss.2008.1.99 |
Reference:
|
[12] Infante, G.: Positive solutions of differential equations with nonlinear boundary conditions.Discrete Contin. Dyn. Syst. suppl. (2003), 432-438. Zbl 1064.34014, MR 2018144 |
Reference:
|
[13] Infante, G.: Nonzero solutions of second order problems subject to nonlinear BCs.Dynamic systems and applications. Vol. 5, 222-226, Dynamic, Atlanta, GA (2008). Zbl 1203.34030, MR 2468144 |
Reference:
|
[14] Infante, G.: Nonlocal boundary value problems with two nonlinear boundary conditions.Commun. Appl. Anal. 12 (2008), 279-288. Zbl 1198.34025, MR 2499284 |
Reference:
|
[15] Infante, G., Pietramala, P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations.Nonlinear Anal. 71 (2009), 1301-1310. Zbl 1169.45001, MR 2527550, 10.1016/j.na.2008.11.095 |
Reference:
|
[16] Infante, G., Pietramala, P.: A cantilever equation with nonlinear boundary conditions.Electron. J. Qual. Theory Differ. Equ., Special Edition I (2009), 14 pp. Zbl 1201.34041, MR 2558840 |
Reference:
|
[17] Infante, G., Webb, J. R. L.: Loss of positivity in a nonlinear scalar heat equation.NoDEA, Nonlinear Differential Equations Appl. 13 (2006), 249-261. Zbl 1112.34017, MR 2243714, 10.1007/s00030-005-0039-y |
Reference:
|
[18] Infante, G., Webb, J. R. L.: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations.Proc. Edinb. Math. Soc. 49 (2006), 637-656. MR 2266153, 10.1017/S0013091505000532 |
Reference:
|
[19] Kong, L., Wang, J.: Multiple positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Anal. 42 (2000), 1327-1333. Zbl 0961.34012, MR 1784078, 10.1016/S0362-546X(99)00143-1 |
Reference:
|
[20] Krasnosel'skiǐ, M. A., Zabreǐko, P. P.: Geometrical Methods of Nonlinear Analysis.Springer, Berlin (1984). MR 0736839 |
Reference:
|
[21] Lan, K. Q.: Multiple positive solutions of semilinear differential equations with singularities.J. London Math. Soc. 63 (2001), 690-704. Zbl 1032.34019, MR 1825983, 10.1112/S002461070100206X |
Reference:
|
[22] Minhós, F. M.: On some third order nonlinear boundary value problems: existence, location and multiplicity results.J. Math. Anal. Appl. 339 (2008), 1342-1353. Zbl 1144.34009, MR 2377091, 10.1016/j.jmaa.2007.08.005 |
Reference:
|
[23] Palamides, P. K., Infante, G., Pietramala, P.: Nontrivial solutions of a nonlinear heat flow problem via Sperner's Lemma.Appl. Math. Lett. 22 (2009), 1444-1450. Zbl 1173.34311, MR 2536830, 10.1016/j.aml.2009.03.014 |
Reference:
|
[24] Palamides, P. K., Palamides, A. P.: A third-order 3-point BVP. Applying Krasnosel'skiǐ's theorem on the plane without a Green's function.Electron. J. Qual. Theory Differ. Equ. (2008), 15 pp. MR 2395531 |
Reference:
|
[25] Palamides, A. P., Smyrlis, G.: Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function.Nonlinear Anal. 68 (2008), 2104-2118. Zbl 1153.34016, MR 2388769 |
Reference:
|
[26] Wang, Y., Ge, W.: Existence of solutions for a third order differential equation with integral boundary conditions.Comput. Math. Appl. 53 (2007), 144-154. Zbl 1134.34009, MR 2321687, 10.1016/j.camwa.2007.01.002 |
Reference:
|
[27] Webb, J. R. L.: Multiple positive solutions of some nonlinear heat flow problems.Discrete Contin. Dyn. Syst. suppl. (2005), 895-903. Zbl 1161.34007, MR 2192752 |
Reference:
|
[28] Webb, J. R. L.: Optimal constants in a nonlocal boundary value problem.Nonlinear Anal. 63 (2005), 672-685. Zbl 1153.34320, MR 2188140, 10.1016/j.na.2005.02.055 |
Reference:
|
[29] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach.J. London Math. Soc. 74 (2006), 673-693. Zbl 1115.34028, MR 2286439, 10.1112/S0024610706023179 |
Reference:
|
[30] Webb, J. R. L., Lan, K. Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type.Topol. Methods Nonlinear Anal. 27 (2006), 91-116. Zbl 1146.34020, MR 2236412 |
Reference:
|
[31] Yang, B.: Positive solutions of a third-order three-point boundary-value problem.Electron. J. Differ. Equations (2008), 10 pp. Zbl 1172.34317, MR 2430896 |
Reference:
|
[32] Yang, Z.: Positive solutions of a second-order integral boundary value problem.J. Math. Anal. Appl. 321 (2006), 751-765. Zbl 1106.34014, MR 2241153, 10.1016/j.jmaa.2005.09.002 |
Reference:
|
[33] Yao, Q.: Positive solutions of singular third-order three-point boundary value problems.J. Math. Anal. Appl. 354 (2009), 207-212. Zbl 1169.34314, MR 2510431, 10.1016/j.jmaa.2008.12.057 |
. |