Previous |  Up |  Next

Article

Title: On some nonlocal systems containing a parabolic PDE and a first order ODE (English)
Author: Besenyei, Ádám
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 2
Year: 2010
Pages: 133-141
Summary lang: English
.
Category: math
.
Summary: Two models of reaction-diffusion are presented: a non-Fickian diffusion model described by a system of a parabolic PDE and a first order ODE, further, porosity-mineralogy changes in porous medium which is modelled by a system consisting of an ODE, a parabolic and an elliptic equation. Existence of weak solutions is shown by the Schauder fixed point theorem combined with the theory of monotone type operators. (English)
Keyword: Schauder fixed point theorem
Keyword: system of parabolic and elliptic equations
Keyword: monotone operator
Keyword: reaction-diffusion
MSC: 35J60
MSC: 35K60
idZBL: Zbl 1224.35221
idMR: MR2723080
DOI: 10.21136/MB.2010.140690
.
Date available: 2010-07-20T18:30:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140690
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Amann, H.: Highly degenerate quasilinear parabolic systems.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 136-166. Zbl 0738.35029, MR 1118224
Reference: [3] Hu, B., Zhang, J.: Global existence for a class of non-Fickian polymer-penetrant systems.J. Partial Differ. Equations 9 (1996), 193-208. MR 1413446
Reference: [4] Besenyei, Á.: On a nonlinear system consisting of three different types of differential equations.Acta Math. Hungar. (2009). MR 2629675
Reference: [5] Chipot, M., Lovat, B.: Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, advances in quenching.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), 35-51. MR 1820664
Reference: [6] Chipot, M., Molinet, L.: Asymptotic behaviour of some nonlocal diffusion problems.Appl. Anal. 80 (2001), 279-315. Zbl 1023.35016, MR 1914683, 10.1080/00036810108840994
Reference: [7] Cinca, S.: Diffusion und Transport in porösen Medien bei veränderlichen Porosität.Diplomawork, University of Heidelberg (2000).
Reference: [8] Cohen, D. S., Jr., A. B. White, Whitelski, T. P.: Shock formation on a multidimensional viscoelastic diffusive systems.SIAM J. Appl. Math. 55 (1995), 348-368. MR 1322764, 10.1137/S0036139993269333
Reference: [9] Edwards, D. A.: A spatially nonlocal model for polymer-penetrant-diffusion.Z. Angew. Math. Phys. 52 (2001), 254-288. Zbl 1160.35328, MR 1834529, 10.1007/PL00001546
Reference: [10] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris (1969). Zbl 0189.40603, MR 0259693
Reference: [11] Logan, J. D., Petersen, M. R., Shores, T. S.: Numerical study of reaction-mineralogy-porosity changes in porous media.Appl. Math. Comput. 127 (2002), 149-164. Zbl 1016.86003, MR 1883122, 10.1016/S0096-3003(01)00052-2
Reference: [12] Rivière, B., Shaw, S.: Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers.SIAM J. Numer. Anal. 44 (2006), 2650-2670. Zbl 1135.65036, MR 2272610, 10.1137/05064480X
Reference: [13] Simon, L.: Application of monotone type operators to parabolic and functional parabolic PDE's.C. M. Dafermos, M. Pokorný Handbook of Differential Equations: Evolutionary Equations, vol 4., North-Holland, Amsterdam (2008), 267-321. MR 2508168
Reference: [14] Simon, L.: On some singular systems of parabolic functional differential equations.Submitted.
Reference: [15] Zeidler, E.: Nonlinear Functional Analysis and its Applications I.Springer (1986). Zbl 0583.47050, MR 0816732
.

Files

Files Size Format View
MathBohem_135-2010-2_3.pdf 250.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo