[3] Brezis, H., Nirenberg, L.: 
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math. 36 (1983), 437-477. 
DOI 10.1002/cpa.3160360405 | 
MR 0709644[4] Brezis, H., Peletier, L. A.: 
Elliptic equations with critical exponent on $S\sp 3$: new non-minimising solutions. C. R. Math. Acad. Sci. Paris 339 (2004), 391-394. 
DOI 10.1016/j.crma.2004.07.010 | 
MR 2092750[6] Budd, C. J., Humphries, A. R.: 
Numerical and analytical estimates of existence regions for semi-linear elliptic equations with critical Sobolev exponents in cuboid and cylindrical domains. J. Comput. Appl. Math. 151 (2003), 59-84. 
DOI 10.1016/S0377-0427(02)00737-9 | 
MR 1950229 | 
Zbl 1016.65082[11] Dávila, J., Pino, M. del, Musso, M., Wei, J.: 
Fast and slow decay solutions for supercritical elliptic problems in exterior domains. Calc. Var. Partial Differential Equations 32 (2008), 453-480. 
DOI 10.1007/s00526-007-0154-1 | 
MR 2402919[15] Felmer, P. L., Quaas, A.: 
Positive radial solutions to a `semilinear' equation involving the Pucci's operator. J. Differ. Equations 199 (2004), 376-393. 
DOI 10.1016/j.jde.2004.01.001 | 
MR 2047915[16] Ghoussoub, N., Yuan, C.: 
Multiple solutions for quasi-linear PDE's involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352 (2000), 5703-5743. 
DOI 10.1090/S0002-9947-00-02560-5 | 
MR 1695021[19] Grossi, M.: 
Existence of radial solutions for an elliptic problem involving exponential nonlinearities. Discrete Contin. Dyn. Syst. 21 (2008), 221-232. 
MR 2379462 | 
Zbl 1155.35042[21] Passaseo, D.: 
Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u+a(x)u=u\sp {2\sp *-1}$ in bounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 185-227. 
DOI 10.1016/S0294-1449(16)30102-0 | 
MR 1378466[22] Pohozaev, S. I.: 
On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39. 
MR 0192184[23] Pucci, P., Serrin, J.: 
Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 69 (1990), 55-83. 
MR 1054124