Previous |  Up |  Next


difference equation; three-dimensional nonlinear system; oscillation
In this paper the three-dimensional nonlinear difference system $$ \begin{aligned} \Delta x_n&=a_n f(y_{n-l}),\\ \Delta y_n&=b_n g(z_{n-m}),\\ \Delta z_n&=\delta c_n h(x_{n-k}), \end{aligned} $$ is investigated. Sufficient conditions under which the system is oscillatory or almost oscillatory are presented.
[1] Agarwal, R. P.: Difference Equations and Inequalities. Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York (2000). MR 1740241 | Zbl 0952.39001
[2] Andruch-Sobiło, A., Drozdowicz, A.: Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type. Math. Bohem. 133 247-258 (2008). MR 2494779 | Zbl 1199.39022
[3] Andruch-Sobiło, A., Migda, M.: On the oscillation of solutions of third order linear difference equations of neutral type. Math. Bohem. 130 19-33 (2005). MR 2128356 | Zbl 1110.39002
[4] Andruch-Sobiło, A., Migda, M.: Bounded solutions of third order nonlinear difference equations. Rocky Mountain J. Math. 36 23-34 (2006). DOI 10.1216/rmjm/1181069486 | MR 2228182 | Zbl 1140.39305
[5] Graef, J. R., Thandapani, E.: Oscillation of two-dimensional difference system. Comput. Math. Appl. 38 157-165 (1999). DOI 10.1016/S0898-1221(99)00246-1 | MR 1713170
[6] Kocić, V. L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht (1993). MR 1247956
[7] Migda, M., Schmeidel, E., Drozdowicz, A.: Nonoscillation results for some third order nonlinear difference equation. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 13 185-192 (2003). MR 2030436
[8] Schmeidel, E.: Boundedness of solutions of nonlinear three-dimensional difference systems with delays. Fasc. Math (to appear). MR 2722636
[9] Schmeidel, E., Zbąszyniak, M.: Asymptotic behavior of solutions of third order difference equation. Proceedings of the International Conference on Difference Equations, Lisbon, 2007 (to appear).
[10] Szafrański, Z., Szmanda, B.: Oscillatory properties of solutions of some difference systems. Rad. Mat. 2 205-214 (1990). MR 1096703
[11] Thandapani, E., Ponnammal, B.: Oscillatory and asymptotic behavior of solutions of nonlinear two-dimensional difference systems. Math. Sci. Res. Hot-Line 4 1-18 (2000). MR 1731890
[12] Thandapani, E., Ponnammal, B.: On the oscillation of a nonlinear two-dimensional difference system. Tamkang J. Math. 32 201-209 (2001). MR 1853793 | Zbl 1009.39009
[13] Thandapani, E., Ponnammal, B.: Oscillatory properties of solutions of three dimensional difference systems. Math. Comput. Modelling 42 641-650 (2005). DOI 10.1016/j.mcm.2004.04.010 | MR 2173482 | Zbl 1086.39014
Partner of
EuDML logo