Previous |  Up |  Next

Article

Title: Oscillation of nonlinear three-dimensional difference systems with delays (English)
Author: Schmeidel, Ewa
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 2
Year: 2010
Pages: 163-170
Summary lang: English
.
Category: math
.
Summary: In this paper the three-dimensional nonlinear difference system $$ \begin{aligned} \Delta x_n&=a_n f(y_{n-l}),\\ \Delta y_n&=b_n g(z_{n-m}),\\ \Delta z_n&=\delta c_n h(x_{n-k}), \end{aligned} $$ is investigated. Sufficient conditions under which the system is oscillatory or almost oscillatory are presented. (English)
Keyword: difference equation
Keyword: three-dimensional nonlinear system
Keyword: oscillation
MSC: 39A10
idZBL: Zbl 1224.39019
idMR: MR2723083
DOI: 10.21136/MB.2010.140693
.
Date available: 2010-07-20T18:34:14Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140693
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities.Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York (2000). Zbl 0952.39001, MR 1740241
Reference: [2] Andruch-Sobiło, A., Drozdowicz, A.: Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type.Math. Bohem. 133 247-258 (2008). Zbl 1199.39022, MR 2494779
Reference: [3] Andruch-Sobiło, A., Migda, M.: On the oscillation of solutions of third order linear difference equations of neutral type.Math. Bohem. 130 19-33 (2005). Zbl 1110.39002, MR 2128356
Reference: [4] Andruch-Sobiło, A., Migda, M.: Bounded solutions of third order nonlinear difference equations.Rocky Mountain J. Math. 36 23-34 (2006). Zbl 1140.39305, MR 2228182, 10.1216/rmjm/1181069486
Reference: [5] Graef, J. R., Thandapani, E.: Oscillation of two-dimensional difference system.Comput. Math. Appl. 38 157-165 (1999). MR 1713170, 10.1016/S0898-1221(99)00246-1
Reference: [6] Kocić, V. L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht (1993). MR 1247956
Reference: [7] Migda, M., Schmeidel, E., Drozdowicz, A.: Nonoscillation results for some third order nonlinear difference equation.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 13 185-192 (2003). MR 2030436
Reference: [8] Schmeidel, E.: Boundedness of solutions of nonlinear three-dimensional difference systems with delays.Fasc. Math (to appear). MR 2722636
Reference: [9] Schmeidel, E., Zbąszyniak, M.: Asymptotic behavior of solutions of third order difference equation.Proceedings of the International Conference on Difference Equations, Lisbon, 2007 (to appear).
Reference: [10] Szafrański, Z., Szmanda, B.: Oscillatory properties of solutions of some difference systems.Rad. Mat. 2 205-214 (1990). MR 1096703
Reference: [11] Thandapani, E., Ponnammal, B.: Oscillatory and asymptotic behavior of solutions of nonlinear two-dimensional difference systems.Math. Sci. Res. Hot-Line 4 1-18 (2000). MR 1731890
Reference: [12] Thandapani, E., Ponnammal, B.: On the oscillation of a nonlinear two-dimensional difference system.Tamkang J. Math. 32 201-209 (2001). Zbl 1009.39009, MR 1853793
Reference: [13] Thandapani, E., Ponnammal, B.: Oscillatory properties of solutions of three dimensional difference systems.Math. Comput. Modelling 42 641-650 (2005). Zbl 1086.39014, MR 2173482, 10.1016/j.mcm.2004.04.010
.

Files

Files Size Format View
MathBohem_135-2010-2_6.pdf 220.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo