Previous |  Up |  Next

Article

Title: Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval (English)
Author: Hilscher, Roman Šimon
Author: Zemánek, Petr
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 2
Year: 2010
Pages: 209-222
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations. (English)
Keyword: linear Hamiltonian system
Keyword: Friedrichs extension
Keyword: self-adjoint operator
Keyword: recessive solution
Keyword: quadratic functional
Keyword: positivity conjoined basis
MSC: 34C10
MSC: 34L05
MSC: 47B25
idZBL: Zbl 1220.47028
idMR: MR2723088
DOI: 10.21136/MB.2010.140698
.
Date available: 2010-07-20T18:39:22Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140698
.
Reference: [1] Ahlbrandt, C. D.: Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals.Rocky Mountain J. Math. 2 (1972), 169-182. MR 0296388, 10.1216/RMJ-1972-2-2-169
Reference: [2] Baxley, J. V.: The Friedrichs extension of certain singular differential operators.Duke Math. J. 35 (1968), 455-462. Zbl 0174.45701, MR 0226446
Reference: [3] Brown, B. M., Christiansen, J. S.: On the Krein and Friedrichs extensions of a positive Jacobi operator.Expo. Math. 23 (2005), 179-186. Zbl 1078.39019, MR 2155010, 10.1016/j.exmath.2005.01.020
Reference: [4] Došlý, O.: Principal and nonprincipal solutions of symplectic dynamic systems on time scales.Electron. J. Qual. Theory Differ. Equ. 2000, Suppl. No. 5, 14 p., electronic only. MR 1798655
Reference: [5] Došlý, O., Hasil, P.: Friedrichs extension of operators defined by symmetric banded matrices.Linear Algebra Appl. 430 (2009), 1966-1975. Zbl 1171.39004, MR 2503945
Reference: [6] Freudenthal, H.: Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren.{German} Proc. Akad. Wet. Amsterdam 39 (1936), 832-833. Zbl 0015.25904
Reference: [7] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren.German Math. Ann. 109 (1934), 465-487. Zbl 0009.07205, MR 1512905, 10.1007/BF01449150
Reference: [8] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, zweiter Teil.German Math. Ann. 109 (1934), 685-713. MR 1512919, 10.1007/BF01449164
Reference: [9] Friedrichs, K.: Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung.German Math. Ann. 112 (1936), 1-23. MR 1513033, 10.1007/BF01565401
Reference: [10] Kalf, H.: A characterization of the Friedrichs extension of Sturm-Liouville operators.J. London Math. Soc. 17 (1978), 511-521. Zbl 0406.34029, MR 0492493, 10.1112/jlms/s2-17.3.511
Reference: [11] Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory.Akademie Verlag, Berlin (1995). Zbl 0842.49001, MR 1334092
Reference: [12] Marletta, M., Zettl, A.: The Friedrichs extension of singular differential operators.J. Differential Equations 160 (2000), 404-421. Zbl 0954.47012, MR 1736997, 10.1006/jdeq.1999.3685
Reference: [13] Möller, M., Zettl, A.: Symmetric differential operators and their Friedrichs extension.J. Differential Equations 115 (1995), 50-69. MR 1308604, 10.1006/jdeq.1995.1003
Reference: [14] Niessen, H. D., Zettl, A.: The Friedrichs extension of regular ordinary differential operators.Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 229-236. Zbl 0712.34020, MR 1055546
Reference: [15] Niessen, H. D., Zettl, A.: Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues.Proc. London Math. Soc. 64 (1992), 545-578. Zbl 0768.34015, MR 1152997
Reference: [16] Reid, W. T.: Ordinary Differential Equations.Wiley, New York (1971). Zbl 0212.10901, MR 0273082
Reference: [17] Rellich, F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung.German Math. Ann. 122 (1951), 343-368. Zbl 0044.31201, MR 0043316, 10.1007/BF01342848
Reference: [18] Rosenberger, R.: A new characterization of the Friedrichs extension of semibounded Sturm-Liouville operators.J. London Math. Soc. 31 (1985), 501-510. Zbl 0615.34019, MR 0812779, 10.1112/jlms/s2-31.3.501
Reference: [19] Wang, A., Sun, J., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators.J. Differential Equations 246 (2009), 1600-1622. Zbl 1169.47033, MR 2488698, 10.1016/j.jde.2008.11.001
Reference: [20] Zettl, A.: On the Friedrichs extension of singular differential operators.Commun. Appl. Anal. 2 (1998), 31-36. Zbl 0895.34018, MR 1612893
Reference: [21] Zettl, A.: Sturm-Liouville Theory.Mathematical Surveys and Monographs, Vol. 121, American Mathematical Society, Providence, RI (2005). Zbl 1103.34001, MR 2170950
Reference: [22] Zheng, Z., Chen, S.: GKN theory for linear Hamiltonian systems.Appl. Math. Comput. 182 (2006), 1514-1527. Zbl 1118.47038, MR 2282593, 10.1016/j.amc.2006.05.041
Reference: [23] Zheng, Z., Qi, J., Chen, S.: Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions.Comput. Math. Appl. 56 (2008), 2825-2833. Zbl 1165.34425, MR 2467672, 10.1016/j.camwa.2008.05.043
.

Files

Files Size Format View
MathBohem_135-2010-2_11.pdf 277.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo