Title:
|
Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval (English) |
Author:
|
Hilscher, Roman Šimon |
Author:
|
Zemánek, Petr |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
135 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
209-222 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations. (English) |
Keyword:
|
linear Hamiltonian system |
Keyword:
|
Friedrichs extension |
Keyword:
|
self-adjoint operator |
Keyword:
|
recessive solution |
Keyword:
|
quadratic functional |
Keyword:
|
positivity conjoined basis |
MSC:
|
34C10 |
MSC:
|
34L05 |
MSC:
|
47B25 |
idZBL:
|
Zbl 1220.47028 |
idMR:
|
MR2723088 |
DOI:
|
10.21136/MB.2010.140698 |
. |
Date available:
|
2010-07-20T18:39:22Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140698 |
. |
Reference:
|
[1] Ahlbrandt, C. D.: Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals.Rocky Mountain J. Math. 2 (1972), 169-182. MR 0296388, 10.1216/RMJ-1972-2-2-169 |
Reference:
|
[2] Baxley, J. V.: The Friedrichs extension of certain singular differential operators.Duke Math. J. 35 (1968), 455-462. Zbl 0174.45701, MR 0226446 |
Reference:
|
[3] Brown, B. M., Christiansen, J. S.: On the Krein and Friedrichs extensions of a positive Jacobi operator.Expo. Math. 23 (2005), 179-186. Zbl 1078.39019, MR 2155010, 10.1016/j.exmath.2005.01.020 |
Reference:
|
[4] Došlý, O.: Principal and nonprincipal solutions of symplectic dynamic systems on time scales.Electron. J. Qual. Theory Differ. Equ. 2000, Suppl. No. 5, 14 p., electronic only. MR 1798655 |
Reference:
|
[5] Došlý, O., Hasil, P.: Friedrichs extension of operators defined by symmetric banded matrices.Linear Algebra Appl. 430 (2009), 1966-1975. Zbl 1171.39004, MR 2503945 |
Reference:
|
[6] Freudenthal, H.: Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren.{German} Proc. Akad. Wet. Amsterdam 39 (1936), 832-833. Zbl 0015.25904 |
Reference:
|
[7] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren.German Math. Ann. 109 (1934), 465-487. Zbl 0009.07205, MR 1512905, 10.1007/BF01449150 |
Reference:
|
[8] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, zweiter Teil.German Math. Ann. 109 (1934), 685-713. MR 1512919, 10.1007/BF01449164 |
Reference:
|
[9] Friedrichs, K.: Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung.German Math. Ann. 112 (1936), 1-23. MR 1513033, 10.1007/BF01565401 |
Reference:
|
[10] Kalf, H.: A characterization of the Friedrichs extension of Sturm-Liouville operators.J. London Math. Soc. 17 (1978), 511-521. Zbl 0406.34029, MR 0492493, 10.1112/jlms/s2-17.3.511 |
Reference:
|
[11] Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory.Akademie Verlag, Berlin (1995). Zbl 0842.49001, MR 1334092 |
Reference:
|
[12] Marletta, M., Zettl, A.: The Friedrichs extension of singular differential operators.J. Differential Equations 160 (2000), 404-421. Zbl 0954.47012, MR 1736997, 10.1006/jdeq.1999.3685 |
Reference:
|
[13] Möller, M., Zettl, A.: Symmetric differential operators and their Friedrichs extension.J. Differential Equations 115 (1995), 50-69. MR 1308604, 10.1006/jdeq.1995.1003 |
Reference:
|
[14] Niessen, H. D., Zettl, A.: The Friedrichs extension of regular ordinary differential operators.Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 229-236. Zbl 0712.34020, MR 1055546 |
Reference:
|
[15] Niessen, H. D., Zettl, A.: Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues.Proc. London Math. Soc. 64 (1992), 545-578. Zbl 0768.34015, MR 1152997 |
Reference:
|
[16] Reid, W. T.: Ordinary Differential Equations.Wiley, New York (1971). Zbl 0212.10901, MR 0273082 |
Reference:
|
[17] Rellich, F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung.German Math. Ann. 122 (1951), 343-368. Zbl 0044.31201, MR 0043316, 10.1007/BF01342848 |
Reference:
|
[18] Rosenberger, R.: A new characterization of the Friedrichs extension of semibounded Sturm-Liouville operators.J. London Math. Soc. 31 (1985), 501-510. Zbl 0615.34019, MR 0812779, 10.1112/jlms/s2-31.3.501 |
Reference:
|
[19] Wang, A., Sun, J., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators.J. Differential Equations 246 (2009), 1600-1622. Zbl 1169.47033, MR 2488698, 10.1016/j.jde.2008.11.001 |
Reference:
|
[20] Zettl, A.: On the Friedrichs extension of singular differential operators.Commun. Appl. Anal. 2 (1998), 31-36. Zbl 0895.34018, MR 1612893 |
Reference:
|
[21] Zettl, A.: Sturm-Liouville Theory.Mathematical Surveys and Monographs, Vol. 121, American Mathematical Society, Providence, RI (2005). Zbl 1103.34001, MR 2170950 |
Reference:
|
[22] Zheng, Z., Chen, S.: GKN theory for linear Hamiltonian systems.Appl. Math. Comput. 182 (2006), 1514-1527. Zbl 1118.47038, MR 2282593, 10.1016/j.amc.2006.05.041 |
Reference:
|
[23] Zheng, Z., Qi, J., Chen, S.: Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions.Comput. Math. Appl. 56 (2008), 2825-2833. Zbl 1165.34425, MR 2467672, 10.1016/j.camwa.2008.05.043 |
. |