Title:
|
On Hölder regularity for vector-valued minimizers of quasilinear functionals (English) |
Author:
|
Daněček, Josef |
Author:
|
Viszus, Eugen |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
135 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
199-207 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type $$ \mathcal A(u;\Omega )=\int _{\Omega } A_{ij}^{\alpha \beta }(x,u) D_{\alpha }u^iD_{\beta }u^j\,{\rm d}x $$ whose gradients belong to the Morrey space $L^{2,n-2}(\Omega ,\mathbb R^{nN})$. (English) |
Keyword:
|
quasilinear functional |
Keyword:
|
minimizer |
Keyword:
|
regularity |
Keyword:
|
Campanato-Morrey space |
MSC:
|
35J60 |
idZBL:
|
Zbl 1224.35116 |
idMR:
|
MR2723087 |
DOI:
|
10.21136/MB.2010.140697 |
. |
Date available:
|
2010-07-20T18:37:58Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140697 |
. |
Reference:
|
[1] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarita all'interno.Quaderni Scuola Norm. Sup. Pisa, Pisa (1980). Zbl 0453.35026, MR 0668196 |
Reference:
|
[2] Daněček, J., Viszus, E.: $C^{0,\gamma}$-regularity for vector-valued minimizers of quasilinear functionals.Nonlinear Differ. Equ. Appl. 16 (2009), 189-211. MR 2497329, 10.1007/s00030-008-7070-8 |
Reference:
|
[3] Daněček, J., John, O., Stará, J.: Remarks on $C^{1,\gamma}$-regularity of weak solutions to elliptic systems with BMO gradients.Z. Anal. Anw. 28 (2009), 57-65. MR 2469716, 10.4171/ZAA/1372 |
Reference:
|
[4] Giorgi, E. De: Sulla diferenziabilita e l'analiticita delle estremali degli integrali multipli regolari.Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 125 (1957), 25-43. |
Reference:
|
[5] Gironimo, P. Di, Esposito, L., Sgambati, L.: A remark on $L^{2,\lambda}$-regularity for minimizers of quasilinear functionals.Manuscripta Math. 113 (2004), 143-151. MR 2128543, 10.1007/s00229-003-0429-6 |
Reference:
|
[6] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Annals of Mathematics Studies N. 105, Princenton University Press, Princeton, 1983. Zbl 0516.49003, MR 0717034 |
Reference:
|
[7] Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31-46. Zbl 0494.49031, MR 0666107, 10.1007/BF02392725 |
Reference:
|
[8] Giaquinta, M., Giusti, E.: Differentiability of minima of non-differentiable functionals.Invent. Math. 72 (1983), 285-298. Zbl 0513.49003, MR 0700772, 10.1007/BF01389324 |
Reference:
|
[9] Giusti, E.: Metodi diretti nel calcolo delle variazioni.Unione Matematica Italiana, Officine Grafiche Tecnoprint, Bologna, 1994. Zbl 0942.49002, MR 1707291 |
Reference:
|
[10] Giusti, E., Miranda, M.: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale di calcolo delle ellitico.Boll. Unione Mat. Ital. 12 (1968), 219-226. MR 0232265 |
Reference:
|
[11] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia, Praha (1977). MR 0482102 |
Reference:
|
[12] Nečas, J., Stará, J.: Principio di massimo per i sistemi ellitici quasilineari non diagonali.Boll. Unione Mat. Ital. 6 (1972), 1-10. MR 0315281 |
Reference:
|
[13] Sarason, D.: Functions of vanishing mean oscillation.Trans. Amer. Math. Soc. 207 (1975), 391-405. Zbl 0319.42006, MR 0377518, 10.1090/S0002-9947-1975-0377518-3 |
Reference:
|
[14] Šverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex functionals.Proc. Nat. Acad. Sci. USA. 99 (2002), 15269-15276. Zbl 1106.49046, MR 1946762, 10.1073/pnas.222494699 |
Reference:
|
[15] Ziemer, W. P.: Weakly Differentiable Functions.Springer, Heidelberg (1989). Zbl 0692.46022, MR 1014685 |
. |