Previous |  Up |  Next

Article

Title: On the oscillation of certain class of third-order nonlinear delay differential equations (English)
Author: Saker, S. H.
Author: Džurina, J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 3
Year: 2010
Pages: 225-237
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the third-order nonlinear delay differential equation (*) $$ ( a(t)\left ( x''(t)\right ) ^{\gamma })' +q(t)x^{\gamma }(\tau (t))=0,\quad t\geq t_0, $$ where $a(t)$, $q(t)$ are positive functions, $\gamma >0$ is a quotient of odd positive integers and the delay function $\tau (t)\leq t$ satisfies $\lim _{t\rightarrow infty }\tau (t)=infty $. We establish some sufficient conditions which ensure that (*) is oscillatory or the solutions converge to zero. Our results in the nondelay case extend and improve some known results and in the delay case the results can be applied to new classes of equations which are not covered by the known criteria. Some examples are considered to illustrate the main results. (English)
Keyword: third-order differential equation
Keyword: oscillation
Keyword: nonoscillation
Keyword: disconjugacy
MSC: 34C10
MSC: 34K11
idZBL: Zbl 1224.34217
idMR: MR2683636
DOI: 10.21136/MB.2010.140700
.
Date available: 2010-07-20T18:41:20Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140700
.
Reference: [1] Bainov, D. D., Mishev, D. P.: Oscillation Theory for Neutral Differential Equations with Delay.Adam Hilger, New York (1991). Zbl 0747.34037, MR 1147908
Reference: [2] Barrett, J. H.: Oscillation theory of ordinary linear differential equations.Adv. Math. (1969), 445-504. Zbl 0213.10801, MR 0257462
Reference: [3] Candan, T., Dahiya, R. S.: Oscillation of third order functional differential equations with delay.Fifth Mississippi Conf. Diff. Eqns. and Comp. Simulation, Electron. J. Diff. Equations Conf. 10 (2003), 39-88. Zbl 1028.34061, MR 1983096
Reference: [4] Džurina, J.: Asymptotic properties of third order delay differential equations.Czech. Math. J. 45 (1995), 443-448. MR 1344509
Reference: [5] Džurina, J.: Asymptotic properties of the third order delay differential equations.Nonlinear Anal., Theory Methods Appl. 26 (1996), 33-34. MR 1354789, 10.1016/0362-546X(94)00239-E
Reference: [6] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations.Marcel Dekker, New York (1994). Zbl 0821.34067, MR 1309905
Reference: [7] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations.Appl. Math. Comp. (2008). Zbl 1154.34368, MR 2437140
Reference: [8] Greguš, M.: Third Order Linear Differential Equations.Reidel, Dordrecht (1982).
Reference: [9] Gyŏri, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications.Clarendon Press, Oxford (1991). MR 1168471
Reference: [10] Hanan, M.: Oscillation criteria for third order differential equations.Pacific J. Math. 11 (1961), 919-944. MR 0145160, 10.2140/pjm.1961.11.919
Reference: [11] Kiguradze, I. T., Chanturia, T. A.: Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations.Kluwer Acad. Publ., Dordrecht (1993). MR 1220223
Reference: [12] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments.J. Math. Soc. Japan 3 (1981), 509-533. Zbl 0494.34049, MR 0620288, 10.2969/jmsj/03330509
Reference: [13] Lacková, D.: The Asymptotic Properties of the Solutions of the n-th Order Functional Neutral Differential Equations.Comput. Appl. Math. 146 (2003), 385-392. Zbl 1035.34087, MR 2006078, 10.1016/S0096-3003(02)00590-8
Reference: [14] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments.Marcel Dekker, New York (1987). Zbl 0832.34071, MR 1017244
Reference: [15] Lazer, A. C.: The behavior of solutions of the differential equation $x'''(t)+P(t)x'(t)+q(t) x(t)=0$.Pacific J. Math. 17 (1966), 435-466. MR 0193332, 10.2140/pjm.1966.17.435
Reference: [16] Mehri, B.: On the conditions for the oscillation of solutions of nonlinear third order differential equations.Čas. Pěst Mat. 101 (1976), 124-124. MR 0442366
Reference: [17] Parhi, N., Das, P.: Asymptotic behavior of a class of third order delay-differential equations.Proc. Am. Math. Soc. 110 387-393 (1990). MR 1019279, 10.1090/S0002-9939-1990-1019279-4
Reference: [18] Parhi, N., Padhi, S.: On asymptotic behavior of delay-differential equations of third order.Nonlinear Anal., Theory Methods Appl. 34 (1998), 391-403. Zbl 0935.34063, MR 1635717, 10.1016/S0362-546X(97)00600-7
Reference: [19] Parhi, N., Padhi, S.: Asymptotic behavior of solutions of third order delay-differential equations.Indian J. Pure Appl. Math. 33 (2002), 1609-1620. MR 1941081
Reference: [20] Saker, S. H.: Oscillation criteria of certain class of third-order nonlinear delay differential equations.Math. Slovaca 56 (2006), 433-450. MR 2267765
Reference: [21] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Academic Press, New York (1968). Zbl 0191.09904, MR 0463570
.

Files

Files Size Format View
MathBohem_135-2010-3_1.pdf 252.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo