Previous |  Up |  Next

Article

Title: The local metric dimension of a graph (English)
Author: Okamoto, Futaba
Author: Phinezy, Bryan
Author: Zhang, Ping
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 3
Year: 2010
Pages: 239-255
Summary lang: English
.
Category: math
.
Summary: For an ordered set $W= \{w_1,w_2,\ldots ,w_k\}$ of $k$ distinct vertices in a nontrivial connected graph $G$, the metric code of a vertex $v$ of $G$ with respect to $W$ is the $k$-vector \[ \mathop {\rm code}(v)= ( d(v,w_1),d(v,w_2),\cdots ,d(v,w_k) ) \] where $d(v,w_i)$ is the distance between $v$ and $w_i$ for $1\le i\le k$. The set $W$ is a local metric set of $G$ if $\mathop {\rm code}(u)\ne \mathop {\rm code}(v)$ for every pair $u,v$ of adjacent vertices of $G$. The minimum positive integer $k$ for which $G$ has a local metric $k$-set is the local metric dimension $\mathop {\rm lmd}(G)$ of $G$. A local metric set of $G$ of cardinality $\mathop {\rm lmd}(G)$ is a local metric basis of $G$. We characterize all nontrivial connected graphs of order $n$ having local metric dimension $1$, $n-2$, or $n-1$ and establish sharp bounds for the local metric dimension of a graph in terms of well-known graphical parameters. Several realization results are presented along with other results on the number of local metric bases of a connected graph. (English)
Keyword: distance
Keyword: local metric set
Keyword: local metric dimension
MSC: 05C12
idZBL: Zbl 1224.05152
idMR: MR2683637
DOI: 10.21136/MB.2010.140702
.
Date available: 2010-07-20T18:42:44Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140702
.
Reference: [1] Anderson, M., Barrientos, C., Brigham, R. C., Carrington, J. R., Kronman, M., Vitray, R. P., Yellen, J.: Irregular colorings of some graph classes.Bull. Inst. Combin. Appl. 55 (2009), 105-119. Zbl 1177.05035, MR 2478212
Reference: [2] Balister, P. N., Győri, E., Lehel, J., Schelp, R. H.: Adjacent vertex distinguishing edge-colorings.SIAM J. Discrete Math. 21 (2007), 237-250. MR 2299707, 10.1137/S0895480102414107
Reference: [3] Burris, A. C., Schelp, R. H.: Vertex-distinguishing proper edge colorings.J. Graph Theory. 26 (1997), 73-82. Zbl 0886.05068, MR 1469354, 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
Reference: [4] Caceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., Wood, D. R.: On the metric dimension of Cartesian products of graphs.SIAM J. Discr. Math. 21 (2007), 423-441. Zbl 1139.05314, MR 2318676, 10.1137/050641867
Reference: [5] Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R.: Resolvability in graphs and the metric dimension of a graph.Discrete Appl. Math. 105 (2000), 99-113. Zbl 0958.05042, MR 1780464, 10.1016/S0166-218X(00)00198-0
Reference: [6] Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs: Fifth Edition.Chapman & Hall/CRC, Boca Raton, FL (2010). MR 2766107
Reference: [7] Chartrand, G., Lesniak, L., VanderJagt, D. W., Zhang, P.: Recognizable colorings of graphs.Discuss. Math. Graph Theory. 28 (2008), 35-57. Zbl 1235.05049, MR 2438039, 10.7151/dmgt.1390
Reference: [8] Chartrand, G., Okamoto, F., Rasmussen, C. W., Zhang, P.: The set chromatic number of a graph.Discuss. Math. Graph Theory. 29 (2009), 545-561. Zbl 1193.05073, MR 2642800, 10.7151/dmgt.1463
Reference: [9] Chartrand, G., Okamoto, F., Salehi, E., Zhang, P.: The multiset chromatic number of a graph.Math. Bohem. 134 (2009), 191-209. Zbl 1212.05071, MR 2535147
Reference: [10] Chartrand, G., Okamoto, F., Zhang, P.: The metric chromatic number of a graph.Australas. J. Combin. 44 (2009), 273-286. Zbl 1181.05038, MR 2527016
Reference: [11] Chartrand, G., Okamoto, F., Zhang, P.: Neighbor-distinguishing vertex colorings of graphs.J. Combin. Math. Combin. Comput (to appear). MR 2675903
Reference: [12] Chartrand, G., Zhang, P.: Chromatic Graph Theory.Chapman & Hall/CRC Press, Boca Raton, FL (2009). Zbl 1169.05001, MR 2450569
Reference: [13] Harary, F., Melter, R. A.: On the metric dimension of a graph.Ars Combin. 2 (1976), 191-195. Zbl 0349.05118, MR 0457289
Reference: [14] Harary, F., Plantholt, M.: The point-distinguishing chromatic index.Graphs and Applications. Wiley, New York (1985), 147-162. Zbl 0562.05023, MR 0778404
Reference: [15] Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Wood, D. R.: Extremal graph theory for the metric dimension and diameter.Electronic Notes in Discrete Mathematics 29 (2007), 339-343.
Reference: [16] Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours.J. Combin. Theory Ser. B. 91 (2004), 151-157. Zbl 1042.05045, MR 2047539, 10.1016/j.jctb.2003.12.001
Reference: [17] Khuller, A., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs.Discr. Appl. Math. 70 (1996), 217-229. Zbl 0865.68090, MR 1410574, 10.1016/0166-218X(95)00106-2
Reference: [18] Radcliffe, M., Zhang, P.: Irregular colorings of graphs.Bull. Inst. Combin. Appl. 49 (2007), 41-59. Zbl 1119.05047, MR 2285522
Reference: [19] Saenpholphat, V.: Resolvability in Graphs.Ph.D. Dissertation, Western Michigan University (2003). MR 2704307
Reference: [20] Slater, P. J.: Leaves of trees.Congress. Numer. 14 (1975), 549-559. Zbl 0316.05102, MR 0422062
Reference: [21] Slater, P. J.: Dominating and reference sets in graphs.J. Math. Phys. Sci. 22 (1988), 445-455. MR 0966610
.

Files

Files Size Format View
MathBohem_135-2010-3_2.pdf 326.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo