Title:
|
Stochastic homogenization of a class of monotone eigenvalue problems (English) |
Author:
|
Svanstedt, Nils |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
55 |
Issue:
|
5 |
Year:
|
2010 |
Pages:
|
385-404 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form $$ -\div \Bigl (a\Bigl (T_1\Bigl (\frac x{\varepsilon _1}\Bigr )\omega _1,T_2 \Bigl (\frac x{\varepsilon _2}\Bigr )\omega _2, \nabla u^\omega _{\varepsilon }\Bigr )\Bigr ) =\lambda _\varepsilon ^\omega \mathcal C(u^\omega _{\varepsilon }). $$ It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\{\lambda _\varepsilon ^{\omega ,k},u^{\omega ,k}_\varepsilon \}$ of $k$th eigenpairs converges to the $k$th eigenpair $\{\lambda ^k,u^k\}$ of the homogenized eigenvalue problem $$ - {\rm div}( b(\nabla u) ) = \lambda {\overline {\mathcal C}}(u). $$ For the case of $p$-Laplacian type maps we characterize $b$ explicitly. (English) |
Keyword:
|
stochastic |
Keyword:
|
homogenization |
Keyword:
|
eigenvalue |
MSC:
|
35B27 |
MSC:
|
35B40 |
MSC:
|
35J25 |
MSC:
|
35J62 |
MSC:
|
35J92 |
MSC:
|
35P30 |
idZBL:
|
Zbl 1224.35026 |
idMR:
|
MR2737719 |
DOI:
|
10.1007/s10492-010-0014-8 |
. |
Date available:
|
2010-11-24T08:14:18Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140711 |
. |
Reference:
|
[1] Azorero, J. P. García, Alonso, I. Peral: Existence and nonuniqueness for the $p$-Laplacian: Nonlinear eigenvalues.Commun. Partial Differ. Equations 12 (1987), 1389-1430. MR 0912211 |
Reference:
|
[2] Baffico, L., Conca, C., Rajesh, M.: Homogenization of a class of nonlinear eigenvalue problems.Proc. R. Soc. Edinb. 136A (2006), 7-22. Zbl 1105.35010, MR 2217505 |
Reference:
|
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.North-Holland Amsterdam (1978). Zbl 0404.35001, MR 0503330 |
Reference:
|
[4] Chiadò-Piat, V., Maso, G. Dal, Defranceschi, A.: G-convergence of monotone operators.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123-160. MR 1065871 |
Reference:
|
[5] Chiadò-Piat, V., Defranceschi, A.: Homogenization of monotone operators.Nonlinear Anal., Theory Methods Appl. 14 (1990), 717-732. MR 1049117, 10.1016/0362-546X(90)90102-M |
Reference:
|
[6] Maso, G. Dal: An Introduction to $\Gamma$-convergence.Birkhäuser Boston (1992). MR 1201152 |
Reference:
|
[7] Defranceschi, A.: G-convergence of cyclically monotone operators.Asymptotic Anal. 2 (1989), 21-37. Zbl 0681.47023, MR 0991415, 10.3233/ASY-1989-2103 |
Reference:
|
[8] Champion, T., Pascale, L. de: Asymptotic behaviour of nonlinear eigenvalue problems involving $p$-Laplacian type operators.Proc. R. Soc. Edinb. 37A (2007), 1179-1195. Zbl 1134.35013, MR 2376876 |
Reference:
|
[9] Dunford, N., Schwartz, J. T.: Linear Operators. Part 1: General Theory.John Wiley & Sons New York (1957). MR 1009162 |
Reference:
|
[10] Pankov, Y. Efendiev A.: Numerical homogenization of nonlinear random parabolic operators.Multiscale Model. Simul. 2 (2004), 237-268. MR 2043587, 10.1137/030600266 |
Reference:
|
[11] Lindqvist, P.: On a nonlinear eigenvalue problem. Fall School in Analysis, Jyväskylä 1994, Finland.Report 68 Univ. Jyväskylä Jyväskylä (1995), 33-54. MR 1351043 |
Reference:
|
[12] Svanstedt, N.: G-convergence of parabolic operators.Nonlinear Anal., Theory Methods Appl. 36 (1999), 807-842. Zbl 0933.35020, MR 1682689, 10.1016/S0362-546X(97)00532-4 |
Reference:
|
[13] Svanstedt, N.: Multiscale stochastic homogenization of monotone operators.Netw. Heterog. Media 2 (2007), 181-192. MR 2291817, 10.3934/nhm.2007.2.181 |
Reference:
|
[14] Svanstedt, N.: Multiscale stochastic homogenization of convection-diffusion equations.Appl. Math. 53 (2008), 143-155. MR 2399903, 10.1007/s10492-008-0017-x |
Reference:
|
[15] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer Berlin (1994). MR 1329546 |
. |