Previous |  Up |  Next

Article

Title: On periodic solutions of non-autonomous second order Hamiltonian systems (English)
Author: Zhang, Xingyong
Author: Zhou, Yinggao
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 5
Year: 2010
Pages: 373-384
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system \begin {equation*} \begin {cases} \ddot u(t)=\nabla F(t,u(t)),\enspace \text {a.e.} \ t\in [0,T],\\ u(0)-u(T)=\dot u(0)-\dot u(T)=0. \end {cases} \end {equation*} Some new existence theorems are obtained by the least action principle. (English)
Keyword: periodic solution
Keyword: critical point
Keyword: non-autonomous second-order system
Keyword: Sobolev inequality
MSC: 34C25
MSC: 37J45
MSC: 47J30
MSC: 58E50
idZBL: Zbl 1224.34126
idMR: MR2737718
DOI: 10.1007/s10492-010-0013-9
.
Date available: 2010-11-24T08:13:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140708
.
Reference: [1] Berger, M. S., Schechter, M.: On the solvability of semilinear gradient operator equations.Adv. Math. 25 (1977), 97-132. Zbl 0354.47025, MR 0500336, 10.1016/0001-8708(77)90001-9
Reference: [2] Fonda, A., Gossez, J.-P.: Semicoercive variational problems at resonance: An abstract approach.Differ. Integral Equ. 3 (1990), 695-708. Zbl 0727.35056, MR 1044214
Reference: [3] Ma, J., Tang, C. L.: Periodic solution for some nonautonomous second-order systems.J. Math. Anal. Appl. 275 (2002), 482-494. MR 1943760, 10.1016/S0022-247X(02)00636-4
Reference: [4] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Springer Berlin (1989). Zbl 0676.58017, MR 0982267
Reference: [5] Rabinowitz, P. H.: On subharmonic solutions of Hamiltonian systems.Commun. Pure Appl. Math. 33 (1980), 609-633. Zbl 0425.34024, MR 0586414, 10.1002/cpa.3160330504
Reference: [6] Tang, C. L.: Periodic solution of non-autonomous second order systems with $\gamma$-quasisub-additive potential.J. Math. Anal. Appl. 189 (1995), 671-675. MR 1312546, 10.1006/jmaa.1995.1044
Reference: [7] Tang, C. L.: Periodic solution of non-autonomous second order system.J. Math. Anal. Appl. 202 (1996), 465-469. MR 1406241, 10.1006/jmaa.1996.0327
Reference: [8] Tang, C. L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlinear Anal., Theory Methods Appl. 32 (1998), 299-304. Zbl 0949.34032, MR 1610641, 10.1016/S0362-546X(97)00493-8
Reference: [9] Wu, X. P., Tang, C. L.: Periodic solution of a class of non-autonomous second order systems.J. Math. Anal. Appl. 236 (1999), 227-235. MR 1704579, 10.1006/jmaa.1999.6408
Reference: [10] Zhao, F. K., Wu, X.: Periodic solution for class of non-autonomous second order systems.J. Math. Anal. Appl. 296 (2004), 422-434. MR 2075174, 10.1016/j.jmaa.2004.01.041
.

Files

Files Size Format View
AplMat_55-2010-5_2.pdf 244.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo